K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2019

Lời giải :

\(x=3+2\sqrt{2}=\left(\sqrt{2}+1\right)^2\)

\(\Leftrightarrow\sqrt{x}=\sqrt{2}+1\)

Thay vào A ta được :

\(A=\frac{3+2\sqrt{2}-2}{2+\sqrt{2}+1}=\frac{1+2\sqrt{2}}{3+\sqrt{2}}\)

Vậy...

17 tháng 10 2019

\(P=\left(\frac{3x+3}{x-9}-\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{3-\sqrt{x}}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right).ĐKXĐ:x\ge0,x\ne9\)

\(=\left(\frac{3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(=\left(\frac{3x+3-2x+6\sqrt{x}-x-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\left(\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)

\(=\frac{3\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\frac{3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\frac{3}{\sqrt{x}+3}\)

17 tháng 10 2019

\(b,x=20-6\sqrt{11}=11-2.3\sqrt{11}+9\)

\(=\left(\sqrt{11}-3\right)^2\)

\(P=\frac{3}{\sqrt{x}+3}=\frac{3}{\sqrt{\left(\sqrt{11}-3\right)^2}+3}=\frac{3}{\sqrt{11}-3+3}=\frac{3\sqrt{11}}{11}\)

\(c,P>\frac{1}{2}\Rightarrow\frac{3}{\sqrt{x}+3}>\frac{1}{2}\)

\(\Leftrightarrow\frac{3}{\sqrt{x}+3}-\frac{1}{2}>0\)

\(\Leftrightarrow\frac{6-\sqrt{x}-3}{2\left(\sqrt{x}+3\right)}>0\)

\(\Leftrightarrow\frac{6-\sqrt{x}-3}{2\left(\sqrt{x}+3\right)}>0\)\(\Leftrightarrow\frac{3-\sqrt{x}}{2\left(\sqrt{x}+3\right)}>0\)

vì \(2\left(\sqrt{x}+3\right)>0\) (nếu x=0 =>pt vô nghiệm)

\(\Rightarrow3-\sqrt{x}>0\Rightarrow\sqrt{x}< 3\Rightarrow x< 9\)

Kết hợp ĐKXĐ: \(0< x< 9\)

13 tháng 12 2020

a) Với \(x\ge0;x\ne1\), ta có :

\(P=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right).\frac{\left(x-1\right)^2}{2}\)

\(P=\left[\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right].\frac{\left(x-1\right)^2}{2}\)

\(P=[\frac{x-2\sqrt{x}+\sqrt{x}-2-x+\sqrt{x}-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}].\frac{\left(x-1\right)^2}{2}\)

\(P=\frac{-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\)

\(P=-\sqrt{x}\left(\sqrt{x}-1\right)\)

Vậy : \(P=-\sqrt{x}\left(\sqrt{x}-1\right)\)

b) Ta có : P > 0

\(\Leftrightarrow-\sqrt{x}\left(\sqrt{x}-1\right)>0\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)< 0\)

\(\Leftrightarrow\hept{\begin{cases}x\ne0\\\sqrt{x}-1< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\\sqrt{x}< 1\end{cases}\Leftrightarrow}}\hept{\begin{cases}x\ne0\\x< 1\end{cases}}\)

Kết hợp với đk đề bài , ta được 0 < x < 1

Vậy với 0 < x < 1 thì P > 0

c) Với \(x=7-4\sqrt{3}=3-2.2.\sqrt{3}+4=\left(\sqrt{3}-2\right)^2\)thì :

\(P=-\sqrt{\left(\sqrt{3}-2\right)^2}\left(\sqrt{\left(\sqrt{3}-2\right)^2}-1\right)\)

\(P=-|\sqrt{3}-2|\left(|\sqrt{3}-2|-1\right)\)

\(P=\left(\sqrt{3}-2\right)\left(1-\sqrt{3}\right)\)

\(P=\sqrt{3}-3-3+2\sqrt{3}\)

\(P=3\sqrt{3}-5\)

Vậy với \(x=7-4\sqrt{3}\)thì \(P=3\sqrt{3}-5\)

d) Ta có \(P=-\sqrt{x}\left(\sqrt{x}-1\right)=\sqrt{x}-x=-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\)

Nhận thấy : \(\left(\sqrt{x}-\frac{1}{2}\right)^2\ge0\Rightarrow-\left(\sqrt{x}-\frac{1}{2}\right)^2\le0\Rightarrow-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Dấu " = " xảy ra khi và chỉ khi

\(\sqrt{x}-\frac{1}{2}=0\Leftrightarrow\sqrt{x}=\frac{1}{2}\Leftrightarrow x=\frac{1}{4}\left(tm\right)\)

Vậy với \(x=\frac{1}{4}\)thì max P là \(\frac{1}{4}\)

13 tháng 3 2020

\(A=\frac{\left(1+\sqrt{x}\right)^2-4\sqrt{x}}{\sqrt{x}-1}\)  \(\left(x\ge0;x\ne1\right)\)

\(A=\frac{x+2\sqrt{x}+1-4\sqrt{x}}{\sqrt{x}-1}=\frac{x-2\sqrt{x}+1}{\sqrt{x}-1}=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}=\sqrt{x}-1\)

và \(B=\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{2}}+\frac{2+\sqrt{2}}{\sqrt{x}+1}\)

\(B=\frac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{2}}+\frac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\)

\(B=\sqrt{3}+2+\frac{1}{\sqrt{3}-\sqrt{2}}+\sqrt{2}\)

\(B=\sqrt{3}+\sqrt{2}+\frac{1}{\sqrt{3}-\sqrt{2}}+2\)

\(B=\frac{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)+1}{\sqrt{3}-\sqrt{2}}+2\)

\(B=\frac{3-2+1}{\sqrt{3}-\sqrt{2}}+2\)

\(B=\frac{2}{\sqrt{3}-\sqrt{2}}+2\)

để A = B thì \(\sqrt{x}-1\)\(\frac{2}{\sqrt{3}-\sqrt{2}}+2\)

\(\sqrt{x}=\frac{2}{\sqrt{3}-\sqrt{2}}+3\)

\(\sqrt{x}=\frac{2\left(\sqrt{3}+\sqrt{2}\right)}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}+3\)

\(\sqrt{x}=2\sqrt{3}+2\sqrt{2}+3\)

tới bước này tui bí :(( mong các bạn giỏi khác giúp bạn :D

16 tháng 8 2016

a) Rút gọn : Q =\(\left(\frac{\sqrt{x}-3}{\sqrt{x}+3}+\frac{\sqrt{x}+3}{\sqrt{x}-3}-\frac{14}{9-x}\right).\frac{\sqrt{x}-3}{2}\left(x\ge0,x\ne9\right)\)

                  Q =\(\left(\frac{\sqrt{x}-3}{\sqrt{x}+3}+\frac{\sqrt{x}+3}{\sqrt{x}-3}+\frac{14}{x-9}\right).\frac{\sqrt{x}-3}{2}\)

                  Q =\(\left(\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{14}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right).\frac{\sqrt{x}-3}{2}\)

                   Q = \(\frac{x-6\sqrt{x}+9+x+6\sqrt{x}+9+14}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{2}\)

                   Q = \(\frac{2x+32}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{2}\)

                   Q = \(\frac{2\left(x+16\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{2}\)

                   Q = \(\frac{x+16}{\sqrt{x}+3}\)

                   thay  \(x=7-4\sqrt{3}\) vào Q ta được

                       Q =\(\frac{7-4\sqrt{3}+16}{\sqrt{7-4\sqrt{3}}+3}\) =\(\frac{23-4\sqrt{3}}{\sqrt{\left(2-\sqrt{3}\right)^2+3}}\)

                                                                  =\(\frac{23-4\sqrt{3}}{2-\sqrt{3}+3}\)

                                                                  =\(\frac{23-4\sqrt{3}}{5-\sqrt{3}}\)

19 tháng 9 2020

Với \(x\ge0;y\ge0\). Ta có:

\(\frac{x+y}{2}\ge\sqrt{xy}\)( Bất đẳng thức Cauchy cho 2 số không âm)

Và như vậy:

\(A=\left(\left|\sqrt{xy}+\frac{x+y}{2}\right|-\left|x\right|\right)+\left(\left|\sqrt{xy}-\frac{x+y}{2}\right|-\left|y\right|\right)\)

\(=\left(\sqrt{xy}+\frac{x+y}{2}-x\right)+\left(\frac{x+y}{2}-\sqrt{xy}-y\right)=0\)

20 tháng 9 2020

Nhưng tích \(xy\ge0\)

28 tháng 7 2016

a, Q = \(\left(\frac{\sqrt{x}-3}{\sqrt{x}+3}+\frac{\sqrt{x}+3}{\sqrt{x}-3}-\frac{14}{9-x}\right)\times\frac{\sqrt{x}-3}{2}\)

        = \(\left[\frac{\left(\sqrt{x}-3\right)^2+\left(\sqrt{x}+3\right)^2+14}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]\times\frac{\sqrt{x}-3}{2}\)

        = \(\left[\frac{x-6\sqrt{x}+9+x+6\sqrt{x}+9+14}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]\times\frac{\sqrt{x}-3}{2}\)

        = \(\frac{2x+32}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\times\frac{\sqrt{x}-3}{2}\)

        = \(\frac{2\left(x+16\right)\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

        = \(\frac{x+16}{\sqrt{x}+3}\)

Thay  \(x=7-4\sqrt{3}\)  vào Q ta được:

    Q= \(\frac{7-4\sqrt{3}+16}{\sqrt{7-4\sqrt{3}}+3}\)  = \(\frac{23-4\sqrt{3}}{\sqrt{\left(2-\sqrt{3}\right)^2}+3}\)=\(\frac{23-4\sqrt{3}}{2+3-\sqrt{3}}=\frac{23-4\sqrt{3}}{5-\sqrt{3}}=\frac{\left(23-4\sqrt{3}\right)\left(5+\sqrt{3}\right)}{\left(5+\sqrt{3}\right)\left(5-\sqrt{3}\right)}\) =\(\frac{103+3\sqrt{3}}{22}\)

b, 

\(Q=\frac{x+16}{\sqrt{x}+3}=\frac{x+9+7}{\sqrt{x}+3}=2+\frac{7}{\sqrt{x}+3}\)

Ta có \(2+\frac{7}{\sqrt{x}+3}\)  nhỏ nhất khi \(\sqrt{x}+3\) nhỏ nhất 

 Mà  với điều kiện \(x\ge0\) nên GTNNQ=\(2+\frac{7}{3}=\frac{13}{3}\)

28 tháng 7 2016

Hỏi đáp Toán

28 tháng 4 2020

a) Vì x>=0 và x2=16

=> x=4 => \(\sqrt{x}=2\)

=> B=\(\frac{2\cdot2+3}{4-1}=\frac{7}{3}\)

b) \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

\(=\frac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{x-1}\)

\(=\frac{x+2\sqrt{x}+1-x+\sqrt{x}+2\sqrt{x}-2}{x-1}\)

\(=\frac{5\sqrt{x}-1}{x-1}\)

=> \(A\left(x-1\right)=5\sqrt{x}-1\left(đpcm\right)\)

c) \(\frac{A}{B}=\frac{5\sqrt{x}-1}{x-1}\cdot\frac{x-1}{2\sqrt{x}+3}=\frac{5\sqrt{x}-1}{2\sqrt{x}+3}=\frac{\frac{5}{2}\left(2\sqrt{x}+3\right)-\frac{17}{2}}{2\sqrt{x}+3}=\frac{5}{2}-\frac{17}{2\left(2\sqrt{x}+3\right)}\)

=> 17 chia hết cho \(2\sqrt{x}+3\)

\(\Rightarrow2\sqrt{x}+3\inƯ\left(17\right)=\left\{-17;-1;1;17\right\}\)

ta có bảng

\(2\sqrt{x}+3\)-17-1117
\(\sqrt{x}\)-17-2-7
x\(\varnothing\)49\(\varnothing\)\(\varnothing\)

P = \(\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right)\)\(\frac{\left(x-1\right)^2}{2}\)( x\(\ge0\); x\(\ne\)1)

\(\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right)\) . \(\frac{\left(x-1\right)^2}{2}\)

\(\frac{x-\sqrt{x}+2-x-\sqrt{x}+2}{\sqrt{x}-1}\)\(\frac{x-1}{2}\)

\(\frac{\left(-2\sqrt{x}+4\right)\left(\sqrt{x}+1\right)}{2}\)

\(\left(\sqrt{x}+1\right)\left(2-\sqrt{x}\right)\)

= -x2 + \(\sqrt{x}\)+ 2

b. tự tính nha

c, P = -x2 + \(\sqrt{x}+2\) 

           =  - (x2 - 2.x.1/2 + 1/4) +2 +1/4

          = - (x-1/2)2+ 9/4

          ta có  (x - 1/2)2 \(\ge0\forall x\)\(\Rightarrow-\left(x-\frac{1}{2}\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\forall x\)

dấu "=" xảy ra khi và chỉ khi x-1/2 = 0

                                               x=1/2

vậy GTLN của P= 9/4 khi và chỉ khi x=1/2

#mã mã#

11 tháng 7 2017

a. \(A=\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(x+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{3}{\sqrt{x}+3}\)

\(x=2.\left(4+\sqrt{15}\right).\left(\sqrt{10}-\sqrt{6}\right).\sqrt{4-\sqrt{15}}\)

\(\Rightarrow x=\left(\sqrt{5}+\sqrt{3}\right)^2.\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right).\frac{\left(\sqrt{5}-\sqrt{3}\right)^2}{\sqrt{2}}\)

\(=\left(\sqrt{5}+\sqrt{3}\right)^2.\left(\sqrt{5}-\sqrt{3}\right)^3\)\(=4\left(\sqrt{5}-\sqrt{3}\right)\)

Thay \(x=4\left(\sqrt{5}-\sqrt{3}\right)\Rightarrow A=\frac{3}{\sqrt{4\left(\sqrt{5}-\sqrt{3}\right)}+3}\)

\(=\frac{3}{2\sqrt{\left(\sqrt{5}-\sqrt{3}\right)}+3}\)