K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2023

a) \(A=-11x^5+4x-12x^2+11x^5+13x^2-7x+2\)

\(A=\left(-11x^5+11x^5\right)+\left(-12x^2+13x^2\right)+\left(4x-7x\right)+2\)

\(A=0+x^2+\left(-3x\right)+2\)

\(A=x^2-3x+2\)

Bậc của đa thức là: \(2\)

Hệ số cao nhất là: \(1\) 

b) Ta có: \(M\left(x\right)=A\left(x\right)\cdot B\left(x\right)\)

\(\Rightarrow M\left(x\right)=\left(x^2-3x+2\right)\cdot\left(x-1\right)\)

\(\Rightarrow M\left(x\right)=x^3-x^2-3x^2+3x+2x-2\)

\(\Rightarrow M\left(x\right)=x^3-4x^2+5x-2\)

c) A(x) có nghiệm khi:

\(A\left(x\right)=0\)

\(\Rightarrow x^2-3x+2=0\)

\(\Rightarrow x^2-x-2x+2=0\)

\(\Rightarrow x\left(x-1\right)-2\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Ta có : \(G\left(x\right)=11x^3+5x^2+4x+10=0\)

\(\left(x+1\right)\left(11x^2-6x+10\right)=0\)

TH1 : \(x=-1\)(tm)

TH2 : \(11x^2-6x+10=0\)

\(\left(-6\right)^2-4.10.11=36-440< 0\)(ktm)

Vậy đa thức có nghiệm x = -1

3 tháng 7 2020

G(x)=11x3+5x2+4x+10

Để G(x)=0 => 11x3+5x2+4x+10=0

                       (x+1)(11x2-6x+10)=0

* x+1=0 => x=-1

* 11x2-6x+10=0 => 6x(5x-1)+10=0

                               6x(5x-1)=-10

                            +) 6x=0 => x=0

                            +) 5x-1=0 => x=1/5

Vậy...........................................................

ko chắc cho lắm

NV
11 tháng 1 2024

b.

Đặt \(f\left(x\right)=x^2-5x+51=x^2-5x+\dfrac{25}{4}+\dfrac{37}{2}=\left(x-\dfrac{5}{2}\right)^2+\dfrac{37}{2}\)

Do \(\left(x-\dfrac{5}{2}\right)^2\ge0;\forall x\Rightarrow\left(x-\dfrac{5}{2}\right)^2+\dfrac{37}{2}\ge\dfrac{37}{2}\) ;\(\forall x\)

\(\Rightarrow\) Đa thức \(f\left(x\right)\) không có nghiệm

c.

Đặt \(g\left(x\right)=-x^2-6x-45=-\left(x^2+6x+9\right)-36=-\left(x+3\right)^2-36\)

Do \(-\left(x+3\right)^2\le0;\forall x\Rightarrow-\left(x+3\right)^2-36\le-36\) ;\(\forall x\)

\(\Rightarrow\) Đa thức \(g\left(x\right)\) không có nghiệm

d.

Đặt \(h\left(x\right)=x^2-4x+26=\left(x^2-4x+4\right)+22=\left(x-2\right)^2+22\)

Do \(\left(x-2\right)^2\ge0;\forall x\Rightarrow\left(x-2\right)^2+22\ge22\) ;\(\forall x\)

\(\Rightarrow\) Đa thức \(h\left(x\right)\) không có nghiệm

4.

d. \(x^3-19x^2=0\)

\(\Leftrightarrow x^2\left(x-19\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x-19=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=19\end{matrix}\right.\)

Vậy đa thức có 2 nghiệm là \(x=0;x=19\)

7 tháng 7 2018

a.\(x^2+11x-12\)

<=>\(x^2-x+12x-12\)

<=> \(x\left(x-1\right)+12\left(x-1\right)\)

<=> \(\left(x-1\right)\left(x+12\right)\)

b. \(2x^2-7x+9\)

Bài này mik kh pk lm, kh cs số nào nhân lại bằng 18 và cộng lại bằng -7 cả 

c. \(x^2-12x+20\)

<=> \(x^2-2x-10x+20\)

<=> \(x\left(x-2\right)-10\left(x-2\right)\)

<=> \(\left(x-2\right)\left(x-10\right)\)

d. \(4x^2-13x+3\)

<=> \(4x^2-12x-x+3\)

<=> \(4x\left(x-3\right)-\left(x-3\right)\)

<=> \(\left(x-3\right)\left(4x-1\right)\)

e. \(x^2-8x-20\)

<=> \(x^2+2x-10x-20\)

<=> \(x\left(x+2\right)-10\left(x+2\right)\)

<=> \(\left(x+2\right)\left(x-10\right)\)

29 tháng 4 2016

+)đặt f(x)=3x2-5x+2=0

3x2-3x-2x+2=0

3x(x-1)-2(x-1)=0

(3x-2)(x-1)=0

3x=2 hoặc x=1

x=2/3 hoặc x=1

29 tháng 4 2016

+)đặt f(x)=3x^2-5x+2=0

3x^2-3x-2x+2=0

3x(x-1)-2(x-1)=0

(3x-2)(x-1)=0

=>x=2/3 hoặc x=1

29 tháng 8 2015

\(\left(x-\frac{9}{4}\right)\left(x+\frac{4}{3}\right)\left(120x^3+12x^2-24x+36\right)\)

29 tháng 8 2015

Cách làm như thế nào hả bạn?

Dựa vào lược đồ Hoóc-le sau khi phân tích, ta có:

f(x)=x3+6x2+11x+6=0

Suy ra:(x-1)(x2+5x+6)=0

Vậy x-1=0 =>x=1                       (1)

Hoặc x2+5x+6=0 =>x-x+6x+6=0 =>x(x+1)+6(x+1)=0 =>(x+1)(x+6)=0

=> x+1=0 =>x=-1                    (2)

hoặc x+6=0 =>x=-6                    (3)

Từ (1),(2) và (3) =>Đa thức F(x) có 3 nghiệm là x=1;x=-1 và x=-6.

~~~~CHÚC BN HOK TỐT~~~~~

Nếu bn ko hiểu về lược đồ Hoóc-le thì lên mạng tra nha!!!!

10 tháng 4 2018

Ban học trường j vậy