Cho tam giác ABC, AD, BE, CF là các đường phân giác trong, đồng quy tại I. Xác định dạng của tam giác ABC để
\(\frac{AI}{AD}.\frac{BI}{BE}.\frac{CI}{CF}\) đạt giá trị lớn nhất\(\frac{ }{ }\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta ABH\) và \(\Delta ABD\) có chung đường cao kẻ từ \(B\rightarrow AD\) nên \(\frac{AH}{AD}=\frac{S_{ABH}}{S_{ABD}}\) (1)
\(\Delta AHC\) và \(\Delta ADC\) có chung đường cao kẻ từ \(C\rightarrow AD\) nên \(\frac{AH}{AD}=\frac{S_{AHC}}{S_{ADC}}\) (2)
Từ (1) và (2) suy ra
\(\frac{AH}{AD}=\frac{S_{ABH}}{S_{ABD}}=\frac{S_{AHC}}{S_{ADC}}=\frac{S_{ABH}+S_{AHC}}{S_{ABD}+S_{ADC}}=\frac{S_{ABH}+S_{ACH}}{S_{ABC}}\)
( Áp dụng tính chất của dãy tỉ số bằng nhau )
CMTT \(\frac{BH}{BE}=\frac{S_{ABH}+S_{BCH}}{S_{ABC}}\)
\(\frac{CH}{CF}=\frac{S_{ACH}+S_{BCH}}{S_{ABC}}\)
Cộng vế với vế của các bất đẳng thức trên ta được :
\(\frac{AH}{AD}+\frac{BH}{BE}+\frac{CH}{CF}=\frac{2\left(S_{ABH}+S_{ACH}+S_{BCH}\right)}{S_{ABC}}=\frac{2S_{ABC}}{S_{ABC}}=2\left(đpcm\right)\)
Chúc bạn học tốt !!!
Hôm qua vẽ cái hình xong ấn nhầm load mất nản không định làm. Thế mà hôm nay vẫn chưa ai làm:vvv
Ta có: \(\frac{PD}{AD}=\frac{S_{BDP}}{S_{BDA}}=\frac{S_{CDP}}{S_{CDA}}=\frac{S_{BDP}+S_{CDP}}{S_{BDA}+S_{CDA}}=\frac{S_{BPC}}{S_{ABC}}\) dễ hiểu đúng không??
Tương tự: \(\frac{PE}{BE}=\frac{S_{APC}}{S_{ABC}}\) và \(\frac{PF}{CF}=\frac{S_{APB}}{S_{ABC}}\)
\(\Rightarrow\frac{PD}{AD}+\frac{PE}{BE}+\frac{PF}{CF}=\frac{S_{APB}+S_{APC}+S_{BPC}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)
ghi đề là đồng quy thôi bày đặt ceva làm gì:D