K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2016

A = \(\frac{x^2+6x+5}{x^2+2x-15}=\frac{x^2+x+5x+5}{x^2-3x+5x-15}=\frac{x.\left(x+1\right)+5.\left(x+1\right)}{x.\left(x-3\right)+5.\left(x-3\right)}=\frac{\left(x+1\right)\left(x+5\right)}{\left(x-3\right)\left(x+5\right)}\)

\(=\frac{x+1}{x-3}=\frac{x-3}{x-3}+\frac{4}{x-3}=1+\frac{4}{x-3}\)

 Để A nguyên thì \(1+\frac{4}{x-3}\text{ nguyên }\Rightarrow\frac{4}{x-3}\text{ nguyên }\Rightarrow x-3\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)

Ta có bảng sau: 

x-31-12-24-4
x42517-1

Vậy x={-1;1;2;4;5;7} thì A nguyên

8 tháng 4 2023

A = \(\dfrac{2x-1}{x+2}\) 

a, A là phân số ⇔ \(x\) + 2  # 0  ⇒ \(x\) # -2

b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2 

                                          ⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2

                                         ⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2

                                         ⇒ 5 ⋮ \(x\) + 2

                            ⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}

                            ⇒  \(x\)   \(\in\) { -7; -3; -1; 3}

c, A = \(\dfrac{2x-1}{x+2}\) 

  A = 2 - \(\dfrac{5}{x+2}\)

Với \(x\) \(\in\) Z và \(x\) < -3 ta có

                     \(x\) + 2 < - 3 + 2 = -1

              ⇒  \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\)  = -5  ⇒ - \(\dfrac{5}{x+2}\)<  5

              ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)

Với \(x\)  > -3;  \(x\) # - 2; \(x\in\)  Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1

            \(\dfrac{5}{x+2}\) > 0  ⇒  - \(\dfrac{5}{x+2}\)  < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)

Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)

Kết hợp (1); (2) và(3)  ta có A(max) = 7 ⇔ \(x\) = -3

 

                     

             

                                   

     

 

            

6 tháng 11 2016

bài 2

Ta có:

\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)

Trường hợp 1: \(x-102>0\Rightarrow x>102\)

\(2-x>0\Rightarrow x< 2\)

\(\Rightarrow102< x< 2\left(loại\right)\)

Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)

\(2-x< 0\Rightarrow x>2\)

\(\Rightarrow2< x< 102\left(nhận\right)\)

Vậy GTNN của A là -100 đạt được khi 2<x<102.

6 tháng 11 2016

trị tuyệt đối phải bằng dương chứ sao bằng âm được

Toán lớp 6 

6 tháng 4 2017

\(A=\frac{x^2+2x+5}{x+1}=\frac{\left(x^2+2x+1\right)+4}{x+1}=\frac{\left(x+1\right)^2+4}{x+1}=x+1+\frac{4}{x+1}\)

Để \(A=x+1+\frac{4}{x+1}\) là số nguyên <=> \(\frac{4}{x+1}\) là số nguyên 

=> x + 1 \(\inƯ\left(4\right)\) = { - 4; - 2; - 1; 1; 2; 4 }

=> x = { - 5; - 3; - 2; 0; 1; 3 }

Vậy x = { - 5; - 3; - 2; 0; 1; 3 }

6 tháng 4 2017

Để biểu thức A đạt giá trị nguyên thì phân số \(\frac{x^2+2x+5}{x+1}\)phải đạt giá trị nguyên.

\(\Rightarrow x^2+2x+5⋮x+1\)

\(\Rightarrow x.\left(x+1\right)+2x+5-x⋮x+1\)

\(\Rightarrow x+5⋮x+1\)

\(\Rightarrow\left(x+1\right)+4⋮x+1\)

\(\Rightarrow4⋮x+1\)

\(\Rightarrow x+1\inƯ\left(4\right)=\left\{-4;-2;-1;+1;+2;+4\right\}\)

\(\Rightarrow x\in\left\{-5;-3;-2;0;+1;+3\right\}\)

vậy \(x\in\left\{-5;-3;-2;0;+1;+3\right\}\)thì A đạt giá trị nguyên

\(a,\)Với \(x\ne-3,x\ne2\) ta có :

\(A=\dfrac{x+2}{x+3}-\dfrac{5}{x^2+x-6}-\dfrac{1}{x-2}\)

   \(=\dfrac{x^2-4}{\left(x+3\right)\left(x-2\right)}-\dfrac{5}{\left(x+3\right)\left(x-2\right)}-\dfrac{x+3}{\left(x+3\right)\left(x-2\right)}\)

   \(=\dfrac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}\)

   \(=\dfrac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}\)

   \(=\dfrac{\left(x-4\right)\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}\)

  \(=\dfrac{x-4}{x-2}\)

\(b,\) \(A=-3\Leftrightarrow\dfrac{x-4}{x-2}=-3\)

\(\Leftrightarrow x-4=-3\left(x-2\right)\)

\(\Leftrightarrow x-4+3x-6=0\)

\(\Leftrightarrow4x=10\Rightarrow x=\dfrac{10}{4}=\dfrac{5}{2}\)

10 tháng 4 2021

 c ?