cho tam giác ABC .gọi D,E,F lần lượt là trung điểm của BC,AC,AB.ở phía ngoài tam giác ấy vẽ FA vuông góc với FK và FA=FK, EG vuông góc vs EA và EG=EA.chứng minh tam giác DKG vuông cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\hept{\begin{cases}AE=EC\\BD=DC\end{cases}\Rightarrow DE}\)là đường trung bình của tam giác ABC
\(\Rightarrow ED=\frac{1}{2}AB=AF\)mà \(AF=FK\Rightarrow ED=FK\)
Tương tự \(FD\)là đường trung bình của tam giác ABC
\(\Rightarrow FD=\frac{1}{2}AC=AE\)mà \(AE=EG\Rightarrow FD=EG\)
Ta có \(\widehat{CED}=\widehat{DFB}=\widehat{EDF}\)vì các góc ở vị trí so le trong
\(\Rightarrow\widehat{KFD}=\widehat{DEG}\)
Xét \(\Delta KFD\)và \(\Delta DEG\)
có \(\hept{\begin{cases}KF=DE\\FD=EG\\\widehat{KFD}=\widehat{DEG}\end{cases}\left(cmt\right)\Rightarrow\Delta KFD=\Delta DEG\left(c-g-c\right)}\)
\(\Rightarrow KD=DG\)
\(\Rightarrow\widehat{FKD}=\widehat{EDG};\widehat{FDK}=\widehat{EGD}\)
Mà \(\widehat{EDG}+\widehat{EGD}+\widehat{DEC}+\widehat{GEC}=180^0\Rightarrow\widehat{EDG}+\widehat{EGD}+\widehat{DEC}=90^0\)
\(\Rightarrow\widehat{EDG}+\widehat{FDK}+\widehat{EDF}=90^0\Rightarrow\widehat{GDK}=90^0\)
Xét \(\Delta DKG\)có \(\hept{\begin{cases}\widehat{GDK}=90^0\\DK=DG\end{cases}\left(cmt\right)}\Rightarrow\Delta DKG\)vuông cân tại D
Vậy tan giác DKG vuông cân
Vì FA = EC
BD = DC
=> DE là đường trung bình ∆ABC
=> ED = \(\frac{1}{2}\)AB = FA
Mà FA = FK
=> ED = FK
Vì FA = FB
BD = DC
=> FD là đường trung bình ∆ABC
=> FD = \(\frac{1}{2}\)AC = AE
Mà AE =EG
FD = EG
=> AE = FD
Ta có : CED = DFB = EDF ( so le trong)
=> KFD = DEG
Xét ∆KFD và ∆DEG ta có :
KF = DE (cmt)
FD = EG
KFD = DEG
=> ∆KFD = ∆DEG (c.g.c)
=> KD = DG
=> FKD = EDG
=> FDK = EGD
Mà EDG + EGD + DEC + GEC = 180°
=> EDG + EGD + DEC = 90°
=> EDG + FDK + EDF = 90°
=> GDK = 90°
Vì DK = DG
=> ∆DGK cân tại D
=> GDK = 90°
=> ∆DGK vuông cân tại D