Chứng minh rằng \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) với \(\forall a,b\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bất đẳng thức cần chứng minh tương đương:
\(a^{10}b^2+b^{10}a^2\ge a^8b^4+b^8a^4\)
\(\Leftrightarrow a^8+b^8\ge a^6b^2+b^6a^2\) (Do \(a^2b^2\ge0\))
\(\Leftrightarrow\left(a^6-b^6\right)\left(a^2-b^2\right)\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)^2\left(a^4+a^2b^2+b^4\right)\ge0\) (luôn đúng).
Vậy ta có đpcm.
bđt \(\Leftrightarrow\)\(\Sigma_{cyc}\frac{a^2}{2}+\Sigma_{cyc}\frac{a}{bc}\ge\frac{9}{2}\)
mặt khác: \(\Sigma_{cyc}\frac{a}{bc}=\frac{1}{2}\Sigma_{cyc}\left(\frac{b}{ca}+\frac{c}{ab}\right)\ge\Sigma\frac{1}{a}\)\(\Rightarrow\)\(\Sigma_{cyc}\frac{a}{bc}\ge\Sigma_{cyc}\frac{1}{a}\)
do đó cần CM: \(\Sigma_{cyc}\frac{a^2}{2}+\Sigma_{cyc}\frac{1}{a}\ge\frac{9}{2}\) (1)
\(VT_{\left(1\right)}=\Sigma_{cyc}\left(\frac{a^2}{2}+\frac{1}{2a}+\frac{1}{2a}\right)\ge3.\frac{3}{2}=\frac{9}{2}\)
"=" \(\Leftrightarrow\)\(a=b=c=1\)
\(BDT\Leftrightarrow\sum\left[\dfrac{\left(a+b\right)^2}{c^2+ab}-2\right]\ge0\)\(\Leftrightarrow\sum\dfrac{a^2+b^2-2c^2}{c^2+ab}\ge0\)(*)
\(\Leftrightarrow\sum\left(\dfrac{a^2-c^2}{c^2+ab}+\dfrac{b^2-c^2}{c^2+ab}\right)\ge0\)
\(\Leftrightarrow\sum\left(c^2-a^2\right)\left(\dfrac{1}{a^2+bc}-\dfrac{1}{c^2+ab}\right)\ge0\)
\(\Leftrightarrow\sum\left(c-a\right)^2.\dfrac{\left(c+a\right)\left(c+a-b\right)}{\left(a^2+bc\right)\left(c^2+ab\right)}\ge0\)
\(\dfrac{\left(a+b\right)^2}{c^2+ab}+\dfrac{\left(b+c\right)^2}{a^2+bc}+\dfrac{\left(c+a\right)^2}{b^2+ca}\ge\dfrac{\left(a+b+b+c+c+a\right)^2}{a^2+b^2+c^2+ab+bc+ca}\)\(=\dfrac{4\left(a+b+c\right)^2}{a^2+b^2+c^2+ab+bc+ca}\) (theo AM-GM với a ; b>0)
\(=\dfrac{4\left(a^2+b^2+c^2+2ab+2bc+2ca\right)}{a^2+b^2+c^2+ab+bc+ca}=\dfrac{4.3.\left(a^2+b^2+c^2\right)}{2.\left(a^2+b^2+c^2\right)}\)(do \(a^2+b^2+c^2\ge ab+bc+ca\))
\(=4.1,5\) = 6 ( do a;b;c>0)
\(\left|a+b\right|\ge\left|a\right|+\left|b\right|\)
\(\Leftrightarrow\left(\left|a+b\right|^2\right)>=\left(\left|a\right|+\left|b\right|\right)^2\)
\(\Leftrightarrow a^2+2ab+b^2>=a^2+b^2+2\left|ab\right|\)
\(\Leftrightarrow2ab>=\left|2ab\right|\)(luôn đúng)
Anh ơi nhưng khi bình phương 2 vế lên thì sao tương đương nhau đc ạ?
Một cách dựa vào hàm số:
Đặt \(VT=f\left(x\right)\)
- Nếu 2 trong 3 số a, b, c bằng nhau hoặc một trong 3 số bằng 0 thì pt hiển nhiên có nghiệm
- Nếu không có bất cứ cặp nào bằng nhau và đều khác 0, do tính đối xứng của \(f\left(x\right)\) , không làm mất tính tổng quát, giả sử \(a>b>c\) ta có:
\(f\left(a\right)=a\left(a-b\right)\left(a-c\right)\)
Do \(\left(a-b\right)\left(a-c\right)>0\Rightarrow f\left(a\right)\) cùng dấu với \(a\) \(\Rightarrow a.f\left(a\right)>0\) (1)
\(f\left(b\right)=b\left(b-c\right)\left(b-a\right)\)
Do \(\left(b-c\right)\left(b-a\right)< 0\Rightarrow b.f\left(b\right)< 0\) (2)
\(f\left(c\right)=c\left(c-a\right)\left(c-b\right)\)
Do \(\left(c-a\right)\left(c-b\right)< 0\Rightarrow c.f\left(c\right)>0\) (3)
- Nếu a, c cùng dấu \(\Rightarrow a;b;c\) cùng dấu \(\Rightarrow ab>0\)
Nhân vế với vế của (1) và (2): \(a.b.f\left(a\right).f\left(b\right)< 0\) \(\Rightarrow f\left(a\right).f\left(b\right)< 0\)
\(\Rightarrow\) Pt có ít nhất 1 nghiệm thuộc \(\left(a;b\right)\)
- Nếu \(a,\) c trái dấu \(\Rightarrow ac< 0\) nhân vế với vế của (1) và (3):
\(ac.f\left(a\right).f\left(c\right)>0\Rightarrow f\left(a\right).f\left(c\right)< 0\)
\(\Rightarrow\) Pt có ít nhất 1 nghiệm thuộc \(\left(a;c\right)\)
Vậy pt đã cho luôn luôn có nghiệm
ta có
- ( /a/+/b/)^2=/a/^2+2/a/ /b/+/b/^2=a^2+2/ab/+b^2
- /a+b/^2=a^2+2ab+b^2
do 2/ab/>= 2ab (dấu = xảy ra khi ab>=0)
=>a^+b^2+2/ab/>2=a^2+b^2+2ab=> đpcm
BĐT cần C/m
\(\Leftrightarrow\left(|a|+|b|\right)^2\ge\left(a+b\right)^2\)
\(\Leftrightarrow a^2+2|ab|+b^2\ge a^2+2ab+b^2\)
\(\Leftrightarrow|ab|\ge ab\)\(\RightarrowĐPCm\)