K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2019

\(f\left(x\right)\)có hai nghiệm là x=-1 và x=1

ta có: \(f\left(1\right)=0\Leftrightarrow1^3+a+b-2=0\Leftrightarrow a+b=1\)(1)

\(f\left(-1\right)=\left(-1\right)^3+a\left(-1\right)^2+b\left(-1\right)-2=0\Leftrightarrow a-b=3\)(2)

Từ (1) VÀ (2) TA CÓ: \(a=\frac{1+3}{2}=2;b=\frac{1-3}{2}=-1\)

b)Đề bài tìm số chính phương có bốn chữ số khác nhau ?

Đặt : \(\overline{abcd}=n^2;\overline{dcba}=m^2\)(g/s m, n là các số tự nhiên)

Theo bài ta có các giả thiết sau:  

\(1000\le m^2,n^2\le9999\Rightarrow32\le m;n\le99\)(1)

\(m^2⋮n^2\Rightarrow m⋮n\)(2)

=> Đặt m=kn (k là số tự nhiên, K>1)

Ta có: \(\hept{\begin{cases}32\le n\le99\\32\le m\le99\end{cases}\Rightarrow}\hept{\begin{cases}32.k\le kn\le99k\\32\le kn\le99\end{cases}\Rightarrow}32k\le kn\le99\Rightarrow k\le\frac{99}{32}\Rightarrow k\le3\)

Vậy nên k=2 hoặc bằng 3

Vì \(m=kn\Rightarrow m^2=k^2.n^2\Rightarrow\overline{dcba}=k^2.\overline{abcd}\)

+) Với k=2

Ta có: \(\overline{dcba}=4.\overline{abcd}\)

Vì  \(\overline{abcd};\overline{dcba}\)là các số chính phương có 4 chữ số khác nhau \(\Rightarrow d,a\in\left\{1;4;6;9;\right\}\)

và \(\overline{dcba}⋮\overline{abcd}\)nên d>a(2)

@) Khi \(a\ge4\Rightarrow\overline{dcba}\ge4.\overline{4bcd}>9999\)(loại)

Nên a=1.

Ta có: \(\overline{dcb1}=4.\overline{1bcd}\)vô lí vì không có số \(d\in\left\{1;4;6;9;\right\}\)nhân với 4 bằng 1

+) Với K=3

tương tự lập luận trên ta có a=1

Ta có: \(\overline{dcb1}=9.\overline{1bcd}\)=> d=9

Ta có: \(\overline{9cb1}=9.\overline{1bc9}\Leftrightarrow9000+c.100+b.10+1=9\left(1000+b.100+c.10+9\right)\)

\(\Leftrightarrow10c=890b+80\Leftrightarrow c=89b+8\)vì c, b là các số tự nhiên từ 0, đến 9

=> b=0; c=8

=> Số cần tìm 1089 và 9801 thỏa mãn với các điều kiện bài toán 

20 tháng 8 2016

a) Gọi abcd có dạng: 1000a + 100b + 10c + d, tương tự bcd= 100b + 10c + d ... 
Theo đề ra : 1000a + 200b + 30c + 4d =4574 
=> d có thể là 1 hoặc 6 (tận cùng bằng 4). 
- Với d=1 thì c=9 => không có b thỏa. 
- d = 6 thì 4d=24 (nhớ 2) => c = 5 để 3c+2 có tận cùng là 7, khi đó, nhớ 1. Vậy b là 2 thêm 1 là 5 => a là 4 
Vậy abcd là 4256

b) (Tương tự)

13 tháng 10 2016

:  bạn có thể tìm thấy bài này trong 255 bài toán số học chọn lọc 
nếu chưa có sách này bạn chịu khó chờ một chút, mình sẽ viết bài ngay 
a,b,c,d là các chữ số 
=> d<10 
=> 0<a<3 
mà 4 là số chẵn 
=> dcba là số chẵn 
=> a chẵn 
=> a = 2 
ta có 4. 2bcd = dcb2 
=> d có thể nhận các giá trị 8 hoặc 9 
mà một số có tận cùng là 8 nhân với 4 sẽ được số tận cùng là 2 
=> d = 8 
ta có 4. 2bc8 = 8cb2 
<=> 4. (2000 + 100b + 10c + 8) = 8000 + 100c + 10b + 2 
<=> 8000 + 400b + 40c + 32 = 8000 + 100c + 10b + 2 
<=> 60c - 390b = 30 
<=> 2c - 13b = 1 
<=> 13b + 1 = 2c 
mà 2c < 20 
=> 13b < 19 
=> b < 2 
2c là số chẵn => b lẻ 
=> b = 1 
=> c = 7 
thử lại thấy thỏa mãn 
vậy số cần tìm là 2178

13 tháng 10 2016

bạn ơi abcd là 1 stn nha

14 tháng 7 2016

Các bạn giải hẳn ra nhé. Tks

a,b,c,d là các chữ số 
=> d<10 
=> 0<a<3 
mà 4 là số chẵn 
=> dcba là số chẵn 
=> a chẵn 
=> a = 2 
ta có 4. 2bcd = dcb2 
=> d có thể nhận các giá trị 8 hoặc 9 
mà một số có tận cùng là 8 nhân với 4 sẽ được số tận cùng là 2 
=> d = 8 
ta có 4. 2bc8 = 8cb2 
<=> 4. (2000 + 100b + 10c + 8) = 8000 + 100c + 10b + 2 
<=> 8000 + 400b + 40c + 32 = 8000 + 100c + 10b + 2 
<=> 60c - 390b = 30 
<=> 2c - 13b = 1 
<=> 13b + 1 = 2c 
mà 2c < 20 
=> 13b < 19 
=> b < 2 
2c là số chẵn => b lẻ 
=> b = 1 
=> c = 7 
thử lại thấy thỏa mãn 
vậy số cần tìm là 2178

6 tháng 10 2019

4.abcd =dcba\(\le9999=>abcd\le2499\)=> a=1 hoặc a=2

mà 4.abcd là số chẵn lên dcba là số chẵn => a=2

dcb2=4.2bcd>4.2000=8000 => d=8 hoặc 9

d=9 thì 4.2bc9 = 9bc2 (4.2bc9 phải có số tận cùng là 6 mà 9bc2 có tận cùng là 2 nên không phù hợp)

vậy d=8 => 4.2bc8=8cb2 <=>4.(2000+100b+10c+8)=8000+100b+10c+2 <=>300b+30c+30=0 (vô lý vì b;c\(\ge0\)