K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2020

Có \(\sin^2a+\cos^2a=1\)\(\Leftrightarrow\sin^2a=1-\cos^2a=1-\left(\frac{1}{3}\right)^2=\frac{8}{9}\)

\(\Leftrightarrow\sin a=\frac{\sqrt{8}}{3}\)

Xét  \(B=\frac{\sin a-3\cos a}{\sin a+2\cos a}=\frac{\frac{\sqrt{8}}{3}-3\cdot\frac{1}{3}}{\frac{\sqrt{8}}{3}+2\cdot\frac{1}{3}}=\frac{7-5\sqrt{2}}{2}\)

1 tháng 4 2019

ĂN CHO CÒN NÓNG:NGON.vui

NV
5 tháng 6 2020

\(A=\frac{cos^2a-sin^2a}{2sin^2a+3sina.cosa}=\frac{\frac{cos^2a}{cos^2a}-\frac{sin^2a}{sin^2a}}{\frac{2sin^2a}{cos^2a}+\frac{3sina.cosa}{cos^2a}}=\frac{1-tan^2a}{2tan^2a+3tana}=\frac{1-2^2}{2.2^2+3.2}=...\)

16 tháng 8 2019

b) khai triển hằng đẳng thức là ra

a) nhân tích chéo

16 tháng 8 2019

\(\frac{\cos\alpha}{1-\sin\alpha}=\frac{1+\sin\alpha}{\cos\alpha}\Leftrightarrow\cos^2\alpha=1-\sin^2\alpha\)\(\Leftrightarrow\cos^2\alpha+\sin^2\alpha=1\)(luôn đúng)

\(\frac{\left(\sin\alpha+\cos\alpha\right)^2-\left(\sin\alpha-\cos\alpha\right)^2}{\sin\alpha\cdot\cos\alpha}=\frac{\sin^2\alpha+\cos^2\alpha+2\sin\alpha\cdot\cos\alpha-\sin^2\alpha-\cos^2\alpha+2\sin\alpha\cdot\cos\alpha}{\sin\alpha\cdot\cos\alpha}\)

\(=\frac{4\sin\alpha\cdot\cos\alpha}{\sin\alpha\cdot\cos\alpha}=4\)(đpcm)

a: \(\sin^2a+\cos^2a=1\)

\(\Leftrightarrow\cos^2a=1-\sin^2a=\left(1-\sin a\right)\left(1+\sin a\right)\)

hay \(\dfrac{\cos a}{1-\sin a}=\dfrac{1+\sin a}{\cos a}\)

b: \(VT=\dfrac{\left(\sin a+\cos a+\sin a-\cos a\right)\left(\sin a+\cos a-\sin a+\cos a\right)}{\sin a\cdot\cos a}\)

\(=\dfrac{2\cdot\cos a\cdot2\sin a}{\sin a\cdot\cos a}=4\)

29 tháng 4 2019

Chứng minh đẳng thức nhé các bạn !!! Mình quên ghi đầu bài

NV
3 tháng 5 2019

\(\frac{\left(sina+cosa\right)^2-1}{cota-sina.cosa}=\frac{sin^2a+cos^2a+2sina.cosa-1}{\frac{cosa}{sina}-sina.cosa}=\frac{2sin^2a.cosa}{cosa-sin^2a.cosa}\)

\(=\frac{2sin^2a.cosa}{cosa\left(1-sin^2a\right)}=\frac{2sin^2a}{cos^2a}=2tan^2a\)