K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAD và ΔBED có 

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

DO đó: ΔBAD=ΔBED

b: Ta có: ΔBAD=ΔBED

nên DA=DE và \(\widehat{BAD}=\widehat{BED}=90^0\)

c: Ta có: ΔBAE cân tại B

mà BI là đường phân giác

nên BI vừa là đường cao vừa là đường trung tuyến

=>I là trung điểm của AE và BD\(\perp\)AE

=>AI=EI

21 tháng 12 2021

a: Xét ΔBAD và ΔBED có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

21 tháng 12 2021

b, Ta có : góc BAD = góc BED=90 độ (hai góc tương ứng)

=> góc BED là góc V

Ta có ; DA=DE (hai cạnh tương ứng)

23 tháng 12 2016

a) ta có: A + ABC + C =180° (đ/l)

=> 90° + ABC + 40° =180°

=> ABC = 180° -( 40°+ 90°)

=> ABC = 50°

Vì BD là tia phân giác góc ABC => ABD = CBD = 50° : 2 = 25°

Vậy ABD = 25°

b) xét tam giác BAD và tam giác BED có:

AB = BE ( GT )

BD chung

ABD = CBD ( GT )

=> tam giác BAD = tam giác BED ( c.g.c )

Ta có A = BED = 90° ( 2 góc t.ư)

=> DE vuông góc BC ( vì có 1 góc= 90° )

c) xét tam giác ABC và tam giác EBF có:

AB = BE ( GT )

B chung

A = E = 90°

=> tam giác ABC = tam giác EBF ( g.c.g )

d) ta có tam giác ABC = tam giác EBF ( theo c )

=> BC = BF ( 2 cạnh tương ứng)

Xét tam giác BKC và tam giác BKF có:

BC = BF ( GT )

BK chung

FBK = KBC ( GT )

=> tam giác BKC = tam giác BKF (c.g.c)

=> BKC = BKF ( 2 góc t.ư)

=> BKC + BKF = 180° ( 2 góc kề bù )

=> BKC = BKF = 180° : 2 = 90° = KFC

Vậy 3 điểm K,F,C thẳng hàng

Bn vẽ hình hộ mk nhé!

 

 

 

 

21 tháng 12 2016

A B C D 40

a) Áp dụng tc tổng 3 góc của 1 tg ta có:

góc BAC + ACB + ABC = 180 độ

=>90 + 40 + ABC = 180

=> ABC = 50 độ

mà góc ABD = CBD = ABC : 2 = 50 : 2 = 25 độ ( BD là tia pg của ABC )

 

12 tháng 12 2016

A B C E F D

a, Số đo góc ABC la : 

goc A+goc B+goc C=180

130+C=180

C=50

=> số đo góc ABD là : goc ABD=1/2gocC=>25

b, Xet 2 tam giac ABD va BDE

Co:AB=BE

goc ABD=goc DBE (250)

BD canh chung =>dpcm

13 tháng 12 2016

mình biết làm mấy câu đầu rồi, mình chỉ bí câu cuối thôi

5 tháng 5 2018

Xét △ ABD và △ EBD

có \(\hept{\begin{cases}AB=EB\\\widehat{ABD}=\widehat{EBD}\\BD=DB\end{cases}}\)

\(\Rightarrow\text{△}ABD=\text{△}EBD\)

\(\Rightarrow DA=DE\)

Ta có: △ ABD = △ EBD

\(\Rightarrow\widehat{BAD}=\widehat{BED}=90^0\)

\(\Rightarrow\widehat{BED}=90^0\)

Ta có: \(\widehat{FAD}+\widehat{DAC}=180^0\Rightarrow\widehat{FAD}=180^0-\widehat{DAC}\Rightarrow\widehat{FAD}=90^0\)

Ta có:\(\widehat{DEC}+\widehat{DEB}=180^0\Rightarrow\widehat{DEC}=180^0-\widehat{DEB}\Rightarrow\widehat{DEC}=90^0\)

Xét △ FAD và △ CED 

có \(\hept{\begin{cases}\widehat{FAD}=\widehat{CED}\\DA=DE\\\widehat{ADF}=\widehat{EDC}\end{cases}}\)

\(\Rightarrow\text{△}FAD=\text{△}CED\)

\(\Rightarrow DC=DF\)