K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2019

\(A=\frac{5x+4}{3x-1}>0\)

\(\Leftrightarrow\hept{\begin{cases}5x+4>0\\3x-1>0\end{cases}}\) hoặc \(\hept{\begin{cases}5x+4< 0\\3x-1< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}5x>-4\\3x>1\end{cases}}\) hoặc \(\hept{\begin{cases}5x< -4\\3x< 1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>-\frac{4}{5}\\x>\frac{1}{3}\end{cases}}\) hoặc \(\hept{\begin{cases}x< -\frac{4}{5}\\x< \frac{1}{3}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x>\frac{1}{3}\\x< -\frac{4}{5}\end{cases}}\)

b, tương tự nhưng xét trái dấu

13 tháng 7 2019

Để mình giải câu b) cho \(A< 0\Leftrightarrow\frac{5x+4}{3x-1}< 0\)

\(\Leftrightarrow\hept{\begin{cases}5x+4>0\\3x-1< 0\end{cases}}\)hoặc \(\hept{\begin{cases}5x+4< 0\\3x-1>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}5x>-4\\3x< 1\end{cases}}\)hoặc \(\hept{\begin{cases}5x< -4\\3x>1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>\frac{-4}{5}\\x< \frac{1}{3}\end{cases}}\left(TM\right)\)hoặc \(\Leftrightarrow\hept{\begin{cases}x< \frac{-4}{5}\\x>\frac{1}{3}\end{cases}}\left(L\right)\)

Vậy \(A< 0\Leftrightarrow\frac{-4}{5}< x< \frac{1}{3}\)

a:

TH1: m=0

=>5x^2-1=0(nhận)

TH2: m<>0

Đặt x^4=a

=>ma^2+5a-1=0

Δ=5^2-4*m*(-1)=25+4m

Để phương trình có hai nghiệm phân biệt thì 4m+25>0

=>m>-25/4

b: TH1: m=-2

=>3x^2-1=0(nhận)

TH2: m<>-2

Đặt x^2=a

=>(m+2)*a^2+3a-1=0

Δ=3^2-4(m+2)*(-1)=4m+8+9=4m+17

Để pt có 2 nghiệm pb thì 4m+17>0

=>m>-17/4

a: Ta có: \(3x\left(3x-1\right)-\left(3x+1\right)\left(3x-1\right)=0\)

\(\Leftrightarrow9x^2-3x-9x^2+1=0\)

\(\Leftrightarrow3x=1\)

hay \(x=\dfrac{1}{3}\)

b: Ta có: \(x^2-5x+25-5x=0\)

\(\Leftrightarrow\left(x-5\right)^2=0\)

\(\Leftrightarrow x-5=0\)

hay x=5

29 tháng 12 2021

Chọn B

AH
Akai Haruma
Giáo viên
28 tháng 12 2021

Lời giải:

$x^3+3x^2-5x+a=x^2(x-1)+4x(x-1)-(x-1)+(a-1)=(x-1)(x^2+4x-1)+(a-1)$

Vậy $x^3+3x^2-5x+a$ chia $x-1$ dư $a-1$. Để đây là phép chia hết thì $a-1=0$

$\Leftrightarrow a=1$
Đáp án B.

20 tháng 12 2018

\(P=1+\frac{x+3}{x^2+5x+6}:\left(\frac{8x^2}{4x^3-8x^2}-\frac{3x}{3x^2-12}-\frac{1}{x+2}\right)\)

\(P=1+\frac{x+3}{\left(x+3\right)\left(x+2\right)}:\left(\frac{8x^2}{4x^3-8x^2}-\frac{3x}{3\left(x^2-4\right)}-\frac{1}{x+2}\right)\)

\(P=1+\frac{1}{x+2}:\left(\frac{4x^2.2}{4x^2\left(x-2\right)}-\frac{x}{\left(x+2\right)\left(x-2\right)}-\frac{1}{x+2}\right)\)

\(P=1+\frac{1}{x+2}:\left(\frac{2}{x-2}-\frac{x}{\left(x+2\right)\left(x-2\right)}-\frac{x-2}{\left(x+2\right)\left(x-2\right)}\right)\)

\(P=1+\frac{1}{x+2}:\left(\frac{2x+4-x-x+2}{\left(x+2\right)\left(x-2\right)}\right)\)

\(P=1+\frac{1}{x+2}:\frac{6}{\left(x+2\right)\left(x-2\right)}=1+\frac{\left(x+2\right)\left(x-2\right)}{6\left(x+2\right)}=1+\frac{x-2}{6}\)

\(=\frac{x+4}{6}.P=0\Leftrightarrow x=-4\)

\(P>0\Leftrightarrow x>-4\)

27 tháng 10 2020

sai lớp :>>>

12 tháng 8 2021

Trả lời:

a,  \(ĐK:x\ne\frac{1}{3}\)

 \(A=\frac{3x+1-1}{1-3x}:\frac{3x-9x^2}{3x-1}=\frac{3x}{1-3x}\cdot\frac{3x-1}{3x-9x^2}=\frac{3x.\left(3x-1\right)}{\left(1-3x\right)\left(3x-9x^2\right)}=\frac{3x\left(3x-1\right)}{\left(1-3x\right)3x\left(1-3x\right)}\)

\(=\frac{3x\left(3x-1\right)}{3x\left(1-3x\right)^2}=\frac{3x\left(3x-1\right)}{3x\left(3x-1\right)^2}=\frac{1}{3x-1}\)

b, \(5x^2+3x=0\)

\(\Leftrightarrow x\left(5x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\5x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{3}{5}\end{cases}}}\)

Thay x = 0 vào A, ta có :

\(A=\frac{1}{3.0-1}=\frac{1}{-1}=-1\)

Thay x = - 3/5 vào A, ta có :

\(A=\frac{1}{3.\left(-\frac{3}{5}\right)-1}=\frac{1}{-\frac{9}{5}-1}=\frac{1}{-\frac{14}{5}}=-\frac{5}{14}\)

c, \(A=\frac{x}{x-1}\)

\(\Leftrightarrow\frac{1}{3x-1}=\frac{x}{x-1}\)\(\left(ĐK:x\ne\frac{1}{3};x\ne1\right)\)

\(\Leftrightarrow\frac{x-1}{\left(3x-1\right)\left(x-1\right)}=\frac{x\left(3x-1\right)}{\left(3x-1\right)\left(x-1\right)}\)

\(\Rightarrow x-1=3x^2-x\)

\(\Leftrightarrow3x^2-x-x+1=0\)

\(\Leftrightarrow3x^2-2x+1=0\)

\(\Leftrightarrow3\left(x^2-\frac{2}{3}x+\frac{1}{3}\right)=0\)

\(\Leftrightarrow x^2-\frac{2}{3}x+\frac{1}{3}=0\)

\(\Leftrightarrow x^2-2.x.\frac{1}{3}+\frac{1}{9}+\frac{2}{9}=0\)

\(\Leftrightarrow\left(x-\frac{1}{3}\right)^2+\frac{2}{9}=0\)

\(\Leftrightarrow\left(x-\frac{1}{3}\right)^2=-\frac{2}{9}\) (vô lí)

Vậy không tìm được x thỏa mãn đề bài.

d, \(\frac{6}{A}=\frac{6}{\frac{1}{3x-1}}=6\left(3x-1\right)=18x-6\)

Vậy x thuộc Z thì 6/A thuộc Z

NM
12 tháng 8 2021

\(A=\left(3x+1-\frac{1}{1-3x}\right):\left(\frac{3x-9x^2}{3x-1}\right)=\left(\frac{1-9x^2-1}{1-3x}\right):\left(\frac{3x\left(1-3x\right)}{3x-1}\right)=-\frac{9x}{1-3x}:\left(-3x\right)=\frac{3}{1-3x}\)

b. Với \(5x^2+3x=0\Leftrightarrow x\left(5x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{3}{5}\end{cases}}\) nhưng mà ở trên ta cần có điều kiện x#0 nên

\(x=-\frac{3}{5}\Rightarrow A=\frac{3}{1-3\times\left(-\frac{3}{5}\right)}=\frac{15}{14}\)

c.\(A=\frac{x}{x-1}=\frac{3}{1-3x}\Leftrightarrow x-3x^2=3x-3\Leftrightarrow3x^2+2x-3=0\Leftrightarrow x=\frac{-1\pm\sqrt{10}}{3}\)

d.\(\frac{6}{A}=2\times\left(1-3x\right)\) nguyên nên \(1-3x=-\frac{k}{2}\Leftrightarrow x=\frac{k+2}{6}\) với k là số nguyên