K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) f(0) = a × 0 + b × 0 + 0 

f(0) = 0 

f(1) = a × 1 + b × 1 + 1 

=> f(1) = a + b +1 (1) 

=> Vì 1 là số nguyên nên a + b là số nguyên 

f(2) = a × 4 + b × 2 + 2 

=> f(2) = 4a + 2b + 2 

=> f(2) = 2 ( 2a + b ) ( đặt nhân tử chung)

Mà 2 là số nguyên => 2a + b là số nguyên 

=> ( 2a + b ) - ( a + b ) là số nguyên 

=> f(k) luôn luôn đạt giá trị nguyên (dpcm)

f(0)=c (nguyên) 

f(1)=a+b+c nguyên => a+b nguyên 

f(2)=4a+2b+c nguyên =>4a+2b nguyên 

=>2a+2(a+b)  nguyên

=> 2a nguyên 

Mặt khác :

f(k) =ak2+bk +c

        = (ak2-ak)+(ak +bk)  +c

        = ak(k-1)+ k (a+b)  +c

        = 2a.  k(k-1)/2 + k(a+b)  +c ( chỗ này k(k-1) trên một dòng nhé,  vì dùng ĐT nên khó vt xíu ^^")

Do k nguyên nên k(k-1) chia hết cho 2=> k(k-1)/2 nguyên. 

=> f(k) nguyên. 

10 tháng 4 2018

cho f(x) = ax3 + bx2+c+d (a,b,c,d thuoc z) va thoa man b= 3a+c

cmr: f(1) , f(-2) la binh phuong mot so nguyen 

cau hoi vay ai tra loi giup minh voi

20 tháng 4 2018

   \(f\left(1\right)=a.1^3+b.1^2+c.1+d\)

             \(=a+b+c+d\)

             \(=a+3a+c+c+d\)

             \(=4a+2c+d\)

\(f\left(-2\right)=a.\left(-2\right)^3+b.\left(-2\right)^2+c.\left(-2\right)+d\)

              \(=-8a+4b-2c+d\)

              \(=-8a+4\left(3a+c\right)-2c+d\)

              \(=-8a+12a+4c-2c+d\)

              \(=4a+2c+d\)

\(\text{Có : }f\left(1\right).f\left(-2\right)=\left(4a+2c+d\right).\left(4a+2c+d\right)\)

                                 \(=\left(4a+2c+d\right)^2\)

\(\text{Vậy ..................................(đpcm)}\)

2 tháng 1 2019

Hàm số f(x) đâu có y,z (y là tên hàm số rồi còn gì)??

ĐK: \(x\inℤ\)

TA có: \(y=f\left(x\right)=ax^2+bx+c⋮5\)

Vậy \(f\left(x\right)=ax^2+bx+c\) có dạng \(5k\) (k nguyên)

Nếu \(x⋮5\Rightarrow x\)có dạng \(5t\)

Thay vào,ta có: \(f\left(x\right)=25at^2+5bt+c=5t\left(5at+b\right)+c=5k\)  (1)

Suy ra \(c=5k-5t\left(5at+b\right)=5\left[k-t\left(5at+b\right)\right]\)  (2)

Thay (2) và (1) suy ra nếu x chia hết cho 5 thì f(x) chia hết cho 5 (thỏa mãn)

Nếu \(x⋮̸5\Rightarrow x\) có dạng 5t + 1

Thay vào và chứng minh tương tự để suy ra nếu x không chia hết cho 5 thì f(x) không chia hết cho 5 (trái với giả thiết)

Từ đó suy ra đpcm

18 tháng 11 2019

Ta có: \(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow f\left(-2\right)=4a-2b+c\)

\(f\left(3\right)=9a+3b+c\)

\(\Rightarrow f\left(-2\right)+f\left(3\right)=13a+b+2c=0\)(vì 13a+b+2c=0)

\(\Rightarrow f\left(-2\right)=-f\left(3\right)\)

\(\Rightarrow f\left(-2\right).f\left(3\right)=-\left[f\left(-2\right)\right]^2\le0\)( đpcm)

NV
23 tháng 4 2021

\(f'\left(x\right)=2ax+b\)

\(f\left(x\right)+\left(x-1\right)f'\left(x\right)=ax^2+bx+c+\left(x-1\right)\left(2ax+b\right)\)

\(=3ax^2+\left(2b-2a\right)x+c-b\)

Yêu cầu bài toán thỏa mãn khi: \(\left\{{}\begin{matrix}3a=3\\2b-2a=0\\c-b=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c=1\)