Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Đề bài sai rồi bn. Hình như f(2) đổi thành f(-2) và f(1).f(2) ms đúng
thay 1 vào f(x) sẽ đc: f(1) = a+b+c+d
thay -2 vào f(x) sẽ đc: f(-2) = -8a + 4b -2c + d
thay b= 3a+c vào 2 đa thức trên sẽ đc:
f(1)= 4a+2c+d và f(-2)= 4a+2c+d
=> f(1).f(-2)= ( 4a+2c+d )2
mà a,b,c,c thuộc Z suy ra biểu thức trên cx thuộc Z
vậy f(1).f(-2) là bình phương của một số nguyên
ko tránh khỏi thiếu sót, nếu làm sai ai đó sửa lại nhé. Thắc mắc gì cứ hỏi
_Hết_
Đề sai của bạn sai nhé
Hình như f(2) đổi thành f(-2) và f(1).f(2) mới đúng
Thay 1 vào f(x) sẽ đc: f(1) = a+b+c+d
Thay -2 vào f(x) sẽ đc: f(-2) = -8a + 4b -2c + d thay b= 3a+c
Vào 2 đa thức trên sẽ đc: f(1)= 4a+2c+d và f(-2)= 4a+2c+d => f(1).f(-2)= ( 4a+2c+d )\(^2\)
Mà a,b,c,c thuộc Z suy ra biểu thức trên cx thuộc Z
Vậy f(1).f(-2) là bình phương của một số nguyên
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 2:
Theo đề, ta có:
\(\left\{{}\begin{matrix}a-c=3\\f\left(2\right)=0\\f\left(-2\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(c+3\right)\cdot2^2+b\cdot2+c=0\\\left(c+3\right)\cdot\left(-2\right)^2+b\cdot\left(-2\right)+c=0\\a=c+3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4\left(c+3\right)+2b+c=0\\4\left(c+3\right)-2b+c=0\\a=c+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5c+12+2b=0\\5c+12-2b=0\\a=c+3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=0\\c=-\dfrac{12}{5}\\a=c+3=-\dfrac{12}{5}+3=\dfrac{3}{5}\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left\{{}\begin{matrix}a;b;c;d\in Z\\b=3a+c\\f\left(x\right)=ax^2-bx^2+cx+d\end{matrix}\right.\)
f(x) =ax^2 -(3a+c)x^2 +cx+d
f(x) =-2ax^2-cx^2 +cx+d
f(1) =-2a +d (đề sai)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(f\left(x\right)=ax^3+bx^2+cx+d⋮5\forall x\in Z\)
+ Với x=0 ta có \(f\left(0\right)=d⋮5\left(1\right)\)
+ Với x=1 ta có \(f\left(1\right)=a+b+c+d⋮5\left(2\right)\)
+ Với x=-1 ta có \(f\left(-1\right)=-a+b-c+d⋮5\left(3\right)\)
+ Với x=2 ta có \(f\left(2\right)=8a+4b+2c+d⋮5\left(4\right)\)
+ Với x=-2 ta có\(f\left(-2\right)=-8a+4b-2c+d⋮5\left(5\right)\)
Từ (1),(2),(3),(4) và (5) suy ra:
\(\left\{{}\begin{matrix}a+b+c⋮5\\-a+b-c⋮5\end{matrix}\right.\)
\(\Rightarrow\left(a+b+c\right)\left(-a+b-c\right)⋮5\)
\(\Rightarrow\left(a+b+c-a+b-c\right)⋮5\)
\(\Rightarrow2b⋮5\)
\(\Rightarrow b⋮5\) (vì 2 và 5 là 2 số nguyên tố cùng nhau) \(\left(6\right)\)
Từ (1),(2),(4) và (6) \(\Rightarrow\left\{{}\begin{matrix}8a+2c⋮5\\a+c⋮5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}8a+2c⋮5\\8\left(a+c\right)⋮5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}8a+2c⋮5\\8a+8c⋮5\end{matrix}\right.\)
\(\Rightarrow\left(8a+2c\right)-\left(8a+8c\right)⋮5\Rightarrow6c⋮5\)
\(\Rightarrow c⋮5\) (vì ƯCLN(6,5)=1)
\(\Rightarrow a⋮5\) (vì \(a+c⋮5\) )
Vậy \(a,b,c,d⋮5\)
cho f(x) = ax3 + bx2+c+d (a,b,c,d thuoc z) va thoa man b= 3a+c
cmr: f(1) , f(-2) la binh phuong mot so nguyen
cau hoi vay ai tra loi giup minh voi
\(f\left(1\right)=a.1^3+b.1^2+c.1+d\)
\(=a+b+c+d\)
\(=a+3a+c+c+d\)
\(=4a+2c+d\)
\(f\left(-2\right)=a.\left(-2\right)^3+b.\left(-2\right)^2+c.\left(-2\right)+d\)
\(=-8a+4b-2c+d\)
\(=-8a+4\left(3a+c\right)-2c+d\)
\(=-8a+12a+4c-2c+d\)
\(=4a+2c+d\)
\(\text{Có : }f\left(1\right).f\left(-2\right)=\left(4a+2c+d\right).\left(4a+2c+d\right)\)
\(=\left(4a+2c+d\right)^2\)
\(\text{Vậy ..................................(đpcm)}\)