K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chọn A

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Ta có:

\(\begin{array}{l}cos2x = cos\left( {x + \frac{\pi }{3}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}2x = x + \frac{\pi }{3} + k2\pi \\2x =  - x - \frac{\pi }{3} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi \\x =  - \frac{\pi }{9} + k\frac{{2\pi }}{3}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\end{array}\)

Với \(x = \frac{\pi }{3} + k2\pi \),\(k \in \mathbb{Z}\) đạt giá trị âm lớn nhất khi k = – 1, khi đó \(x = \frac{\pi }{3} - 2\pi  = \frac{{ - 5\pi }}{3}\)

Với \(x =  - \frac{\pi }{9} + k\frac{{2\pi }}{3}\),\(k \in \mathbb{Z}\) đạt giá trị âm lớn nhất khi k = 0, khi đó \(x = x =  - \frac{\pi }{9} + 0.\frac{{2\pi }}{3} =  - \frac{\pi }{9}\)

Vậy nghiệm âm lớn nhất của phương trình đã cho là \( - \frac{\pi }{9}\).
Đáp án: A

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có

\(\begin{array}{l}\cot x{\rm{ }} = {\rm{  - 1}}\\ \Leftrightarrow \cot x{\rm{ }} = {\rm{ cot  - }}\frac{\pi }{4}\\ \Leftrightarrow x{\rm{ }} = {\rm{  - }}\frac{\pi }{4} + k\pi ;k \in Z\end{array}\)

Vậy phương trình đã cho có  nghiệm là \(x{\rm{ }} = {\rm{  - }}\frac{\pi }{4} + k\pi ;k \in Z\)

Chọn A

6 tháng 8 2019

Tham khảo ạ: Giải phương trình:$\sin^4x+\cos^4x+\cos(x-\frac{\pi}{4})\sin(3x-\frac{\pi}{4})-\frac{3}{2}=0$ - Phương trình, Hệ phương trình Lượng giác - Diễn đàn Toán học

Phần đằng sau tự giải nốt ạ

NV
14 tháng 9 2020

1.

\(\Leftrightarrow2x-\frac{\pi}{4}=x+\frac{\pi}{3}+k\pi\)

\(\Rightarrow x=\frac{7\pi}{12}+k\pi\)

\(-\pi< \frac{7\pi}{12}+k\pi< \pi\Rightarrow-\frac{19}{12}< k< \frac{5}{12}\Rightarrow k=\left\{-1;0\right\}\) có 2 nghiệm

\(x=\left\{-\frac{5\pi}{12};\frac{7\pi}{12}\right\}\)

2.

\(\Leftrightarrow3x-\frac{\pi}{3}=\frac{\pi}{2}+k\pi\)

\(\Rightarrow x=\frac{5\pi}{18}+\frac{k\pi}{3}\)

Nghiệm âm lớn nhất là \(x=-\frac{\pi}{18}\) khi \(k=-1\)

3.

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{3\pi}{4}=\frac{\pi}{3}+k2\pi\\x-\frac{3\pi}{4}=\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{13\pi}{12}+k2\pi\\x=\frac{17\pi}{12}+k2\pi\end{matrix}\right.\)

Nghiệm âm lớn nhất \(x=-\frac{7\pi}{12}\) ; nghiệm dương nhỏ nhất \(x=\frac{13\pi}{12}\)

Tổng nghiệm: \(\frac{\pi}{2}\)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) Vì \(\sin \frac{\pi }{6} = \frac{1}{2}\) nên ta có phương trình \(sin2x = \sin \frac{\pi }{6}\)

\( \Leftrightarrow \left[ \begin{array}{l}2x = \frac{\pi }{6} + k2\pi \\2x = \pi  - \frac{\pi }{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{12}} + k\pi \\x = \frac{{5\pi }}{{12}} + k\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

\(\begin{array}{l}b,\,\,sin(x - \frac{\pi }{7}) = sin\frac{{2\pi }}{7}\\ \Leftrightarrow \left[ \begin{array}{l}x - \frac{\pi }{7} = \frac{{2\pi }}{7} + k2\pi \\x - \frac{\pi }{7} = \pi  - \frac{{2\pi }}{7} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{{3\pi }}{7} + k2\pi \\x = \frac{{6\pi }}{7} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\end{array}\)

\(\begin{array}{l}\;c)\;sin4x - cos\left( {x + \frac{\pi }{6}} \right) = 0\\ \Leftrightarrow sin4x = cos\left( {x + \frac{\pi }{6}} \right)\\ \Leftrightarrow sin4x = \sin \left( {\frac{\pi }{2} - x - \frac{\pi }{6}} \right)\\ \Leftrightarrow sin4x = \sin \left( {\frac{\pi }{3} - x} \right)\\ \Leftrightarrow \left[ \begin{array}{l}4x = \frac{\pi }{3} - x + k2\pi \\4x = \pi  - \frac{\pi }{3} + x + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{15}} + k\frac{{2\pi }}{5}\\x = \frac{{2\pi }}{9} + k\frac{{2\pi }}{3}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\end{array}\)

NV
2 tháng 4 2019

\(A=2cosx-3cosx-sin\left(3\pi+\frac{\pi}{2}-x\right)+tan\left(\pi+\frac{\pi}{2}-x\right)\)

\(A=-cosx+sin\left(\frac{\pi}{2}-x\right)+tan\left(\frac{\pi}{2}-x\right)\)

\(A=-cosx+cosx+cotx=cotx\)

\(B=2cosx+sin\left(4\pi+\pi-x\right)+sin\left(2\pi-\frac{\pi}{2}+x\right)-sinx\)

\(B=2cosx+sin\left(\pi-x\right)+sin\left(-\frac{\pi}{2}+x\right)-sinx\)

\(B=2cosx+sinx-sin\left(\frac{\pi}{2}-x\right)-sinx\)

\(B=2cosx-cosx=cosx\)