K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chọn A

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Ta có:

\(\begin{array}{l}cos2x = cos\left( {x + \frac{\pi }{3}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}2x = x + \frac{\pi }{3} + k2\pi \\2x =  - x - \frac{\pi }{3} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi \\x =  - \frac{\pi }{9} + k\frac{{2\pi }}{3}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\end{array}\)

Với \(x = \frac{\pi }{3} + k2\pi \),\(k \in \mathbb{Z}\) đạt giá trị âm lớn nhất khi k = – 1, khi đó \(x = \frac{\pi }{3} - 2\pi  = \frac{{ - 5\pi }}{3}\)

Với \(x =  - \frac{\pi }{9} + k\frac{{2\pi }}{3}\),\(k \in \mathbb{Z}\) đạt giá trị âm lớn nhất khi k = 0, khi đó \(x = x =  - \frac{\pi }{9} + 0.\frac{{2\pi }}{3} =  - \frac{\pi }{9}\)

Vậy nghiệm âm lớn nhất của phương trình đã cho là \( - \frac{\pi }{9}\).
Đáp án: A