K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2019

 Ta xét hai khả năng:

a. Nếu \(n⋮3\)thì rõ ràng \(\left(n^3+2n\right)⋮3.\)

b. Nếu n không chia hết cho 3 thì n có dạng n = 3k + 1 hoặc n = 3k + 2 với k \(\in N\).

*Với \(\text{n = 3k+ 1:}\left(n^3+2n\right)=\left(3k+1\right)^3+2\left(3k+1\right).\)

\(=27k^3+27k^2+9k+1+6k+2=3\left(9k^3+9k^2+5k+1\right)⋮3.\)

*Với \(n=3k+2:n^3+2n=\left(3k+2\right)^3+2\left(3k+2\right).\)

\(=27k^3+54k^2+36k+8+6k+4=3\left(9k^3+18k^2+14k+4\right)⋮3.\)

Mệnh đề được chứng minh.

P/s: không chắc lắm:)

9 tháng 7 2019

TA Thấy:

\(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\)

Vì \(n^3-n\)là tích của 3 số tự nhiên liên tiếp nên \(\left(n^3-n\right)⋮3\)

Mà \(3n⋮3\)

do đó \(\left(n^3-n+3n\right)⋮3\)

Hay \(n^3+2n⋮3\left(ĐPCM\right)\)