Cho biết \(2\left(a^2+b^2\right)=\left(a-b\right)^2\). Chứng minh rằng a và b là hai số đối nhau.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2\left(a^2+b^2\right)=\left(a-b\right)^2\)
\(\Rightarrow2a^2+2b^2=a^2-2ab+b^2\)
\(\Rightarrow a^2+b^2+2ab=0\)
\(\Rightarrow\left(a+b\right)^2=0\)
\(\Rightarrow a+b=0\Rightarrow a=-b\Rightarrow dpcm\)
a. \(2\left(a^2+b^2\right)=\left(a-b\right)^2\)
\(\Leftrightarrow2a^2+2b^2=a^2+b^2-2ab\)
\(\Leftrightarrow a^2+b^2=-2ab\)
\(\Leftrightarrow a^2+2ab+b^2=0\)
\(\Leftrightarrow\left(a+b\right)^2=0\)
\(\Leftrightarrow a+b=0\Leftrightarrow a=-b\) (đpcm)
b. \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
\(\Leftrightarrow a^2+b^2+c^2+3-2a-2b-2c=0\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)
Vì \(\left(a-1\right)^2;\left(b-1\right)^2;\left(c-1\right)^2\ge0\)
\(\Rightarrow\left(a-1\right)^2=\left(b-1\right)^2=\left(c-1\right)^2=0\)
\(\Leftrightarrow a-1=b-1=c-1=0\Leftrightarrow a=b=c=1\)
c. \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Tương tự câu b ta có a = b = c
#)Giải :
a) Để C/m a và b là hai số đối nhau => a + b = 0
Ta có : \(2\left(a^2+b^2\right)=\left(a-b\right)^2\)
\(\Leftrightarrow2a^2+2b^2=a^2-2ab+b^2\)
\(\Leftrightarrow2a^2+2b^2-a^2-2ab+b^2=0\)
\(\Leftrightarrow a^2+2ab+b^2=0\)
\(\Leftrightarrow\left(a+b\right)^2=0a\Leftrightarrow a+b=0\)
\(\Rightarrowđpcm\)
\(\dfrac{a^3}{\left(b+1\right)\left(c+2\right)}+\dfrac{b+1}{12}+\dfrac{c+2}{18}\ge3\sqrt[3]{\dfrac{a^3\left(b+1\right)\left(c+2\right)}{216\left(b+1\right)\left(c+2\right)}}=\dfrac{a}{2}\)
Tương tự: \(\dfrac{b^3}{\left(c+1\right)\left(a+2\right)}+\dfrac{c+1}{12}+\dfrac{a+2}{18}\ge\dfrac{b}{2}\)
\(\dfrac{c^3}{\left(a+1\right)\left(b+2\right)}+\dfrac{a+1}{12}+\dfrac{b+2}{18}\ge\dfrac{c}{2}\)
Cộng vế:
\(VT+\dfrac{5}{36}\left(a+b+c\right)+\dfrac{7}{12}\ge\dfrac{1}{2}\left(a+b+c\right)\)
\(\Rightarrow VT\ge\dfrac{13}{36}\left(a+b+c\right)-\dfrac{7}{12}\ge\dfrac{13}{36}.3\sqrt[3]{abc}-\dfrac{7}{12}=\dfrac{1}{2}\) (đpcm)
\(\frac{\Sigma_{cyc}a^3\left(b-c\right)}{\Sigma_{cyc}a^2\left(b-c\right)}=\frac{-\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}{-\left(a-b\right)\left(b-c\right)\left(c-a\right)}=a+b+c\ge3\sqrt[3]{abc}\)
\(\Leftrightarrow a^2b-a^2c+b^2c-b^2a+c^2a-c^2b=0\)
\(\Leftrightarrow\left(a^2b-b^2a\right)-\left(a^2c-b^2c\right)+\left(c^2a-c^2b\right)\)
\(\Leftrightarrow ab\left(a-b\right)-c\left(a^2-b^2\right)+c^2\left(a-b\right)\)
\(\Leftrightarrow ab\left(a-b\right)-c\left(a+b\right)\left(a-b\right)+c^2\left(a-b\right)\)
\(\Leftrightarrow\left(a-b\right)\left[ab-c\left(a+b\right)+c^2\right]=0\)
\(\Leftrightarrow\left(a-b\right)\left(ab-ac-bc+c^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left[a\left(b-c\right)-c\left(b-c\right)\right]=0\)
\(\Leftrightarrow\left(a-b\right)\left(a-c\right)\left(b-c\right)=0\)
\(\Leftrightarrow.....\)
Ta có : \(\frac{b-c}{\left(a-b\right)\left(a+c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}\)
\(=\frac{-\left(a-b\right)+\left(a-c\right)}{\left(a-b\right)\left(a-c\right)}+\frac{-\left(b-c\right)+\left(b-a\right)}{\left(b-c\right)\left(b-a\right)}+\frac{-\left(c-a\right)+\left(c-b\right)}{\left(c-a\right)\left(c-b\right)}\)
\(=-\frac{1}{a-c}+\frac{1}{a-b}+\frac{-1}{b-a}+\frac{1}{b-c}+\frac{-1}{c-b}+\frac{1}{c-a}\)
\(=\frac{1}{c-a}+\frac{1}{a-b}+\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{b-c}+\frac{1}{c-a}\)
\(=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\)
a.
\(a+b+c\ge3\sqrt[3]{abc}=6\) \(\Rightarrow2\left(a+b+c\right)\ge12\Rightarrow-12\ge-2\left(a+b+c\right)\)
Ta có:
\(a^2+b^2+c^2=a^2+4+b^2+4+c^2+4-12\ge4a+4b+4c-2\left(a+b+c\right)=2\left(a+b+c\right)\)
b.
\(a^3+b^3+c^3=\dfrac{1}{2}\left(a^3+a^3+8\right)+\dfrac{1}{2}\left(b^3+b^3+8\right)+\dfrac{1}{2}\left(c^3+c^3+8\right)-12\)
\(\ge3a^2+3b^2+3c^2-12\ge3a^2+3b^2+3c^2-2\left(a+b+c\right)\ge3a^2+3b^2+3c^2-\left(a^2+b^2+c^2\right)=...\)
\(2.\left(a^2+b^2\right)=\left(a-b\right)^2\)
\(\Rightarrow2a^2+2b^2=a^2-2ab+b^2\)
\(\Rightarrow a^2+b^2=-2ab\)
\(\Rightarrow a^2+2ab+b^2=0\)
\(\Rightarrow\left(a+b\right)^2=0\)
\(\Rightarrow a=-b\)
Vậy a và b là 2 số đối nhau
\(2\left(a^2+b^2\right)=\left(a-b\right)^2\)
\(\Leftrightarrow2a^2+2b^2=a^2-2ab+b^2\)
\(\Leftrightarrow a^2+2ab+b^2=0\)
\(\Leftrightarrow\left(a+b\right)^2=0\)
\(\Leftrightarrow a+b=0\)
\(\Leftrightarrow a=-b\)
Vậy a và b là hai số đối nhau (đpcm)