E là một điểm nằm trên cạnh BC của hình vuông ABCD sao cho BE = 20cm và CE = 28 cm. P là điểm nằm trên đường chéo BD. Tính giá trị nhỏ nhất có thể theo cm của PE+PC ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3 : Chỉ là kẻ BD, CM ko thôi sao? thế thì M và D nằm đâu trên 2 cạnh AB và AC cũng đc? Như thế sẽ ko làm được bạn nhé
Câu 5 :
\(2\left(y^2+yz+z^2\right)+3x^2=36\)
\(\Leftrightarrow2y^2+2yz+2z^2+3x^2=36\)
\(\Leftrightarrow2y^2+2yz+2z^2+3x^2+2xy+2zx=36+2xy+2zx\)
\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2zx+z^2\right)=36\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=36\)
\(\Leftrightarrow\left(x+y+z\right)^2=36-\left(x-y\right)^2-\left(x-z\right)^2\le36\)
\(\Leftrightarrow-6\le x+y+z\le6\)
_Minh ngụy_
a) Dễ thấy: \(\Delta\)BME vuông cân tại E => BE = ME (1)
Xét tứ giác AEMF: ^FAE = ^AEM = ^AFM = 900 => Tứ giác AEMF là hình chữ nhật => ME = AF (2)
(1); (2) => BE = AF => \(\Delta\)CBE = \(\Delta\)BAF (c.g.c) => CE = BF (đpcm)
Đồng thời: ^BCE= ^ABF. Mà ^ABF + ^CBF = 900
Nên ^BCE + ^CBF = 900 hay ^BCI + ^CBI = 900 => CE vuông góc BF tại I => ^EBF = ^MEC (Cùng phụ ^BEC)
Xét \(\Delta\)BEF và \(\Delta\)EMC có: ^EBF = ^MEC; BE = EM; BF = EC => \(\Delta\)BEF = \(\Delta\)EMC (c.g.c)
=> EF = MC (2 canh tương ứng) (đpcm).
b) Gọi S là trung điểm cạnh BC
Xét \(\Delta\)BIC: Vuông tại I; trung tuyến IS => IS = BC/2 = a/2
=> I luôn cách S 1 khoảng không đổi bằng a/2. Ta có: S là trung điểm cạnh BC nên S cố định => ĐPCM.
c) C/m tương tự câu a: DE vuông góc CF
Do CE vuông góc BF (cmt) nên ^EIF = 900 => ^IFE + ^IEF = 900 hay ^CEF + ^BFE = 900
Mà \(\Delta\)BEF = \(\Delta\)EMC (cmt) => ^BFE = ^ECM (2 góc tương ứng)
Nên ^CEF + ^ECM = 900 => CM vuông góc EF
Xét \(\Delta\)EFC: DE vuông góc CF; BF vuông góc CE; CM vuông góc EF
=> BF; CM; DE đồng qui (đpcm).
a) Điểm E nằm giữa hai điểm C, D vì CD = 5cm > CE = 3cm.
b) Trong ba tia BD,BE,BC tia BE nằm giữa hai tia còn lại vì điểm E nằm giữa hai điểm C, D.
c) DE = 2cm.
d) D là trung điểm của đoạn thẳng AE vì AD = DE = 2cm.
e) Đoạn thẳng BD là cạnh, của các tam giác: BDA, BDE,BDC.
a. Dễ thấy \(AEMF\)là hình chữ nhật \(\Rightarrow\) \(AE=FM\)
Dễ thấy \(\Delta DFM\) vuông cân tại F \(\Rightarrow FM=DF\)
\(\Rightarrow AE=DF\) \(\Rightarrow\)tam giác vuông ADE bằng tam giác vuông DCF ( \(AE=DF;AD=DC\) \(\Rightarrow\) \(DE=CF\)
tg vuông ADE = tg vuông DCF => ^ADE = ^DCF => DE vuông góc CF (1) ( vì đã có AD vuông góc DC)
b) Tương tự câu a) dễ thấy AF = BE => tg vuông ABF = tg vuông BCE => ^ABF = ^BCE => BF vuông góc CE ( vì đã có AB vuông góc BC) (2)
Gọi H là giao điểm của BF và DE
Từ (1) ở câu a) và (2) => H là trực tâm của tg CEF
Mặt khác gọi N là giao điểm của BC và MF. dễ thấy CN = DF = AE: MN = EM = A F => tg vuông AEF = tg vuông CMN => ^AEF = ^MCN => CM vuông góc EF ( vì đã có CN vuông góc AE) => CM là đường cao thuộc đỉnh C của tg CE F => CM phải đi qua trực tâm H => 3 đường thẳng DE;BF,CM đồng quy tại H
c) Dễ thấy AE + EM = AE + EB = AB = không đổi
(AE - EM)^2 >=0 <=> AE^2 + EM^2 >= 2AE.EM <=> (AE + EM)^2 >=4AE.EM <=> [(AE + EM)/2]^2 >= AE.EM <=> AB^2/4 >=S(AEM F)
Vậy S(AEM F ) max khi AE = EM => M trùng tâm O của hình vuông ABCD
Câu hỏi của Kunzy Nguyễn - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo tại đây nhé.