K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2019

\(\Leftrightarrow x^2+\left(2\sqrt{2}-3\right)x+4+3\sqrt{2}=0\)

\(\Delta=\left(2\sqrt{2}-3\right)^2-4\left(4+3\sqrt{2}\right)=1-24\sqrt{2}< 0\)

=> Pt vô nghiệm

21 tháng 8 2017

Bài 1 :

a) \(\sqrt{4\left(a-3\right)^2}+2\sqrt{\left(a^2+4a+4\right)}\)

= \(2\left|a-3\right|+2\left|a+2\right|\)

\(=2.\left(-a+3\right)+2\left(-a-2\right)\)

b) có sai đề ko ?

c) \(4x-\sqrt{8}+\dfrac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}=4x-\sqrt{8}+\sqrt{\dfrac{x^2\left(x+2\right)}{x+2}}=4x-2\sqrt{4}+x=3x-2\sqrt{4}\)

22 tháng 8 2017

tksa @Azue

26 tháng 8 2017

@Azue help me

29 tháng 8 2017

help me

ĐKXĐ: x>=0; x<>1

a: \(B=\dfrac{\sqrt{x}\left(x-1\right)^2}{\sqrt{x}+1}:\left(\left(x+\sqrt{x}+1+\sqrt{x}\right)\left(x-\sqrt{x}+1-\sqrt{x}\right)\right)\)

\(=\dfrac{\sqrt{x}\left(x-1\right)^2}{\sqrt{x}+1}:\left[\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)^2\right]\)

\(=\dfrac{\sqrt{x}\left(x-1\right)^2}{\left(x-1\right)^2\cdot\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

b: Khi x=4-2căn 3=(căn 3-1)^2 thì \(B=\dfrac{\sqrt{3}-1}{\sqrt{3}-1+1}=\dfrac{\sqrt{3}-1}{\sqrt{3}}=\dfrac{3-\sqrt{3}}{3}\)

c: B=2/3

=>căn x/căn x+1=2/3

=>căn x=2

=>x=4

d: \(B-1=\dfrac{\sqrt{x}-\sqrt{x}-1}{\sqrt{x}+1}=-\dfrac{1}{\sqrt{x}+1}< 0\)

=>B<1

e: B>1

=>-1/căn x+1>0

=>căn x+1<0(vô lý)

=>KO có x thỏa mãn

f: B nguyên khi căn x chia hết cho căn x+1

=>căn x+1-1 chia hết cho căn x+1

=>căn x+1=1 hoặc căn x+1=-1(loại)

=>căn x=0

=>x=0

AH
Akai Haruma
Giáo viên
10 tháng 7 2020

Lời giải:

Coi yêu cầu đề là rút gọn. Lần sau bạn chú ý viết đầy đủ đề.

ĐK: $x>0; x\neq 1$
Gọi biểu thức đã cho là $P$. Ta có:

\(P=\frac{x-2+\sqrt{x}}{\sqrt{x}(\sqrt{x}+2)}.\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{(\sqrt{x}-1)(\sqrt{x}+2)}{\sqrt{x}(\sqrt{x}+2)}.\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{\sqrt{x}}\)

17 tháng 7 2017

ĐK \(\orbr{\begin{cases}x>2\\x\le-2\end{cases}}\)

Đặt \(\sqrt{\frac{x+2}{x-2}}=t\Rightarrow x+2=t^2\left(x-2\right)\)

Vậy thì phương trình trở thành \(t^2\left(x-2\right)^2+4\left(x-2\right)t+3=0\)

\(\Leftrightarrow\left[t\left(x-2\right)+1\right]\left[t\left(x-2\right)+3\right]=0\)

Với \(t\left(x-2\right)+1=0\Leftrightarrow\sqrt{\frac{x+2}{x-2}}\left(x-2\right)+1=0\)

Để pt có nghiệm thì \(x-2< 0\) , khi đó \(-\sqrt{\frac{x+2}{x-2}\left(x-2\right)^2}+1=0\Leftrightarrow-\sqrt{x^2-4}+1=0\)

\(\Leftrightarrow x^2-4=1\Leftrightarrow\orbr{\begin{cases}x=\sqrt{5}\left(l\right)\\x=-\sqrt{5}\left(n\right)\end{cases}}\)

Với \(t\left(x-2\right)+3=0\Leftrightarrow-\sqrt{x^2-4}+3=0\)

\(\Leftrightarrow x^2-4=9\Leftrightarrow\orbr{\begin{cases}x=\sqrt{13}\left(l\right)\\x=-\sqrt{13}\left(n\right)\end{cases}}\)

Vậy pt có tập nghiệm \(S=\left\{-\sqrt{13};-\sqrt{5}\right\}\)