Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a) \(\sqrt{4\left(a-3\right)^2}+2\sqrt{\left(a^2+4a+4\right)}\)
= \(2\left|a-3\right|+2\left|a+2\right|\)
\(=2.\left(-a+3\right)+2\left(-a-2\right)\)
b) có sai đề ko ?
c) \(4x-\sqrt{8}+\dfrac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}=4x-\sqrt{8}+\sqrt{\dfrac{x^2\left(x+2\right)}{x+2}}=4x-2\sqrt{4}+x=3x-2\sqrt{4}\)
ĐKXĐ: x>=0; x<>1
a: \(B=\dfrac{\sqrt{x}\left(x-1\right)^2}{\sqrt{x}+1}:\left(\left(x+\sqrt{x}+1+\sqrt{x}\right)\left(x-\sqrt{x}+1-\sqrt{x}\right)\right)\)
\(=\dfrac{\sqrt{x}\left(x-1\right)^2}{\sqrt{x}+1}:\left[\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)^2\right]\)
\(=\dfrac{\sqrt{x}\left(x-1\right)^2}{\left(x-1\right)^2\cdot\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
b: Khi x=4-2căn 3=(căn 3-1)^2 thì \(B=\dfrac{\sqrt{3}-1}{\sqrt{3}-1+1}=\dfrac{\sqrt{3}-1}{\sqrt{3}}=\dfrac{3-\sqrt{3}}{3}\)
c: B=2/3
=>căn x/căn x+1=2/3
=>căn x=2
=>x=4
d: \(B-1=\dfrac{\sqrt{x}-\sqrt{x}-1}{\sqrt{x}+1}=-\dfrac{1}{\sqrt{x}+1}< 0\)
=>B<1
e: B>1
=>-1/căn x+1>0
=>căn x+1<0(vô lý)
=>KO có x thỏa mãn
f: B nguyên khi căn x chia hết cho căn x+1
=>căn x+1-1 chia hết cho căn x+1
=>căn x+1=1 hoặc căn x+1=-1(loại)
=>căn x=0
=>x=0
Lời giải:
Coi yêu cầu đề là rút gọn. Lần sau bạn chú ý viết đầy đủ đề.
ĐK: $x>0; x\neq 1$
Gọi biểu thức đã cho là $P$. Ta có:
\(P=\frac{x-2+\sqrt{x}}{\sqrt{x}(\sqrt{x}+2)}.\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{(\sqrt{x}-1)(\sqrt{x}+2)}{\sqrt{x}(\sqrt{x}+2)}.\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{\sqrt{x}}\)
ĐK \(\orbr{\begin{cases}x>2\\x\le-2\end{cases}}\)
Đặt \(\sqrt{\frac{x+2}{x-2}}=t\Rightarrow x+2=t^2\left(x-2\right)\)
Vậy thì phương trình trở thành \(t^2\left(x-2\right)^2+4\left(x-2\right)t+3=0\)
\(\Leftrightarrow\left[t\left(x-2\right)+1\right]\left[t\left(x-2\right)+3\right]=0\)
Với \(t\left(x-2\right)+1=0\Leftrightarrow\sqrt{\frac{x+2}{x-2}}\left(x-2\right)+1=0\)
Để pt có nghiệm thì \(x-2< 0\) , khi đó \(-\sqrt{\frac{x+2}{x-2}\left(x-2\right)^2}+1=0\Leftrightarrow-\sqrt{x^2-4}+1=0\)
\(\Leftrightarrow x^2-4=1\Leftrightarrow\orbr{\begin{cases}x=\sqrt{5}\left(l\right)\\x=-\sqrt{5}\left(n\right)\end{cases}}\)
Với \(t\left(x-2\right)+3=0\Leftrightarrow-\sqrt{x^2-4}+3=0\)
\(\Leftrightarrow x^2-4=9\Leftrightarrow\orbr{\begin{cases}x=\sqrt{13}\left(l\right)\\x=-\sqrt{13}\left(n\right)\end{cases}}\)
Vậy pt có tập nghiệm \(S=\left\{-\sqrt{13};-\sqrt{5}\right\}\)
\(\Leftrightarrow x^2+\left(2\sqrt{2}-3\right)x+4+3\sqrt{2}=0\)
\(\Delta=\left(2\sqrt{2}-3\right)^2-4\left(4+3\sqrt{2}\right)=1-24\sqrt{2}< 0\)
=> Pt vô nghiệm