Cho hình thang ABCD vuông tại A có AB//CD và AB<CD. Kẻ AH vuông góc với BD tại H. Tính BH và diện tích hình thang ABCD nếu biết BC=13cm, CD=14cm và DB=15cm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AB//CD
AH\(\perp\)DC
Do đó: AH\(\perp\)AB
Xét tứ giác ABCH có AB//CH
nên ABCH là hình thang
Hình thang ABCH có AB\(\perp\)AH
nên ABCH là hình thang vuông
\(S=\dfrac{6+14}{2}\cdot10=10\cdot10=100\left(cm^2\right)\)
. a) HS tự chứng minh
b) Kẻ đường cao AH, BK,chứng minh được DH = CK
Ta được H D = C D − A B 2 = 3 c m
Þ AH = 4cm Þ SABCD = 20cm2
Tớ biết làm nè
.
.
.
.
.
.
.
.
.
.
.
Biết làm cl í, tin người vcl:))
Xét tam giác \(ABD\)vuông tại \(A\):
\(BD^2=AB^2+AD^2\)(định lí Pythagore)
\(=4^2+10^2=116\)
\(\Rightarrow BD=\sqrt{116}=2\sqrt{29}\left(cm\right)\)
Lấy \(E\)thuộc \(CD\)sao cho \(AE\perp AC\)
Suy ra \(ABDE\)là hình bình hành.
\(AE=BD=2\sqrt{29}\left(cm\right),DE=AB=4\left(cm\right)\).
Xét tam giác \(AEC\)vuông tại \(A\)đường cao \(AD\):
\(\frac{1}{AD^2}=\frac{1}{AE^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AC^2}=\frac{1}{AD^2}-\frac{1}{AE^2}=\frac{1}{100}-\frac{1}{116}=\frac{1}{715}\)
\(\Rightarrow AC=\sqrt{715}\left(cm\right)\)
\(AE^2=ED.EC\Leftrightarrow EC=\frac{AE^2}{ED}=\frac{116}{4}=29\left(cm\right)\)suy ra \(DC=25\left(cm\right)\)
Hạ \(BH\perp CD\).
\(BC^2=HC^2+BH^2=21^2+10^2=541\Rightarrow BC=\sqrt{541}\left(cm\right)\)
\(S_{ABCD}=\left(AB+CD\right)\div2\times AD=\frac{4+25}{2}\times10=145\left(cm^2\right)\)
Theo định lý Pytago ta dễ nhận ra tam giác DBC vuông tại C
Tức góc C=90 độ
ta thấy ABCD là hình thang AB//CD mà A=90 độ nên góc D =90 độ
mà góc C =90 độ (cmt)
vậy ABCD là hình chữ nhật
Điều này vô lý vì đề cho AB<CD
Mk nghĩ đề sai chỗ các số đo
theo mk chắc cạnh CD =15cm ms đúng