K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2019

tìm nghiệm đa thức nha !

17 tháng 6 2019

Đặt \(4x^4-5x^2+1=0\)

\(\Leftrightarrow4x^4-4x^2-x^2+1=0\)

\(\Leftrightarrow\left(4x^4-4x^2\right)-\left(x^2-1\right)=0\)

\(\Leftrightarrow4x^2\left(x^2-1\right)-\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(4x^2-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-1=0\\4x^2-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2=1\\4x^2=1\end{cases}}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\pm1\\x^2=\frac{1}{4}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\pm1\\x=\pm\frac{1}{2}\end{cases}}}\)

Vậy ...

1 tháng 10 2021

\(a,ĐK:x\ge\dfrac{1}{5}\\ PT\Leftrightarrow5x-1=64\\ \Leftrightarrow x=13\left(tm\right)\\ b,ĐK:x\ge\dfrac{2}{5}\\ BPT\Leftrightarrow5x-2< 16\\ \Leftrightarrow x< \dfrac{18}{5}\\ \Leftrightarrow\dfrac{2}{5}\le x< \dfrac{18}{5}\\ c,ĐK:x\ge3\\ PT\Leftrightarrow\left|x-1\right|-\left|x-2\right|=x-3\\ \Leftrightarrow\left[{}\begin{matrix}1-x-\left(2-x\right)=x-3\left(x< 1\right)\\x-1-\left(2-x\right)=x-3\left(1\le x< 2\right)\\x-1-\left(x-2\right)=x-3\left(x\ge2\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(ktm\right)\\x=0\left(tm\right)\\x=4\left(tm\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
23 tháng 5 2021

Lời giải:

1.

$4x+9=0$

$4x=-9$

$x=\frac{-9}{4}$
2.

$-5x+6=0$

$-5x=-6$

$x=\frac{6}{5}$

3.

$x^2-1=0$

$x^2=1=1^2=(-1)^2$

$x=\pm 1$

4.

$x^2-9=0$

$x^2=9=3^2=(-3)^2$

$x=\pm 3$

AH
Akai Haruma
Giáo viên
23 tháng 5 2021

5.

$x^2-x=0$

$x(x-1)=0$

$x=0$ hoặc $x-1=0$

$x=0$ hoặc $x=1$

6.

$x^2-2x=0$

$x(x-2)=0$

$x=0$ hoặc $x-2=0$

$x=0$ hoặc $x=2$

7.

$x^2-3x=0$

$x(x-3)=0$

$x=0$ hoặc $x-3=0$ 

$x=0$ hoặc $x=3$

8.

$3x^2-4x=0$

$x(3x-4)=0$

$x=0$ hoặc $3x-4=0$

$x=0$ hoặc $x=\frac{4}{3}$

17 tháng 12 2021

\(x^4+2x^3+5x^2+4x-1-m=0\)

\(\Leftrightarrow\left(x^2+x\right)^2+4\left(x^2+x\right)-1-m=0\left(1\right)\)

\(đặt:x^2+x=t\ge\dfrac{-\Delta}{4a}=-\dfrac{1}{4}\)

\(\left(1\right)\Leftrightarrow t^2+4t-1-m=0\) có nghiệm trên \([-\dfrac{1}{4};\text{+∞})\)

\(f\left(t\right)=t^2+4t-1=m\)

\(f\left(-\dfrac{b}{2a}\right)=-5\)

\(f\left(-\dfrac{1}{4}\right)=-\dfrac{31}{16}\Rightarrow m\ge-\dfrac{31}{16}\Rightarrow\left[{}\begin{matrix}t=\dfrac{-b}{2a}=-2\Rightarrow x^2+x+2=0\left(vô-nghiệm\right)\left(loại\right)\\\left\{{}\begin{matrix}t1=\dfrac{-4+\sqrt{20+4m}}{2}=-2+\sqrt{5+m}\\t2=\dfrac{-4-\sqrt{20+4m}}{2}=-2-\sqrt{5+m}\end{matrix}\right.\end{matrix}\right.\) 

\(x^2+x=t1=-2+\sqrt{5+m}\Leftrightarrow f\left(x\right)=x^2+x+2=\sqrt{5+m}\) có nghiệm thuộc \(\left[-1;1\right]\)

\(\Rightarrow f\left(-\dfrac{b}{2a}\right)=\dfrac{7}{4}\)

\(f\left(-1\right)=2;f\left(1\right)=4\)

\(\Rightarrow\dfrac{7}{4}\le\sqrt{5+m}\le4\Leftrightarrow\dfrac{-31}{16}\le m\le11\)

\(x^2+x=t2=-2-\sqrt{5+m}\Leftrightarrow f\left(x\right)=x^2+x+2=-\sqrt{5+m}\)

có nghiệm trên \(\left[-1;1\right]\)

\(x^2+x+2>0\Rightarrow x^2+x+2=-\sqrt{5+m}< 0\left(vô-lí\right)\Rightarrow vô-nghiệm\forall m\)

\(\Rightarrow\dfrac{-31}{16}\le m\le11\) thì pt có  nghiệm thuộc \(\left[-1;1\right]\)

 

 

a)A(x) = 3x^3 - 4x^4 - 2x^3 + 4x^4 - 5x + 3 

=x^3-5x+3

bậc:3

hệ số tự do:3

hệ số cao nhất :3

B(x) = 5x^3 - 4x^2 - 5x^3 - 4x^2 - 5x - 3

=-8x^2-5x+3

bậc:2

hệ số tự do:3

hệ số cao nhất:3

b)A(x)+B(x)=x^3-8^2+10x+6

câu b mik ko đặt tính theo hàng dọc đc thông cảm nha

Bài 1: 

c) ĐKXĐ: \(x\notin\left\{\dfrac{1}{4};-\dfrac{1}{4}\right\}\)

Ta có: \(\dfrac{3}{1-4x}=\dfrac{2}{4x+1}-\dfrac{8+6x}{16x^2-1}\)

\(\Leftrightarrow\dfrac{-3\left(4x+1\right)}{\left(4x-1\right)\left(4x+1\right)}=\dfrac{2\left(4x-1\right)}{\left(4x+1\right)\left(4x-1\right)}-\dfrac{6x+8}{\left(4x-1\right)\left(4x+1\right)}\)

Suy ra: \(-12x-3=8x-2-6x-8\)

\(\Leftrightarrow-12x-3-2x+10=0\)

\(\Leftrightarrow-14x+7=0\)

\(\Leftrightarrow-14x=-7\)

\(\Leftrightarrow x=\dfrac{1}{2}\)(nhận)

Vậy: \(S=\left\{\dfrac{1}{2}\right\}\)

23 tháng 7 2019

\(P\left(x\right)=5x^5+5x^4-2x^2+5x^2-x^5-4x^4+1-4x^5=x^4+3x^2+1\)

Mà \(x^4\ge0;3x^2\ge0=>x^4+3x^2+1\ge1>0\) nên \(P\left(x\right)\) vô nghiệm

Hok tốt nha !

23 tháng 7 2019

P(x) = 5x5 + 5x4 - 2x2 + 5x2 - x5 - 4x4 + 1 - 4x5

P(x) = (5x5 - x5 - 4x5) + (5x4 - 4x4) - (2x2 - 5x2) + 1

P(x) = x4 + 3x2 + 1

Ta có: x4 \(\ge\)0 \(\forall\)x; 3x2 \(\ge\)\(\forall\)x

=> x4 + 3x2 + 1 \(\ge\)\(\forall\)x

=> P(x) \(\ne\)0

=> P(x) vô nghiệm

11 tháng 2 2022

\(A\left(x\right)=5x^2-5x+3=5\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0,\forall x\)

⇒ pt vô nghiệm

\(B\left(x\right)=4x^2-3x+7=4\left(x-\dfrac{3}{8}\right)^2+\dfrac{103}{16}>0,\forall x\)

⇒ pt vô nghiệm

\(C\left(x\right)=5x^2-11x+6=\left(5x^2-5x\right)-\left(6x-6\right)\)

\(=5x\left(x-1\right)-6\left(x-1\right)=\left(5x-6\right)\left(x-1\right)\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\\x=1\end{matrix}\right.\)

Vậy ...

11 tháng 2 2022

a, Ta có : 

\(A\left(x\right)=5x^2-5x+1+2=0\Leftrightarrow5x^2-6x+3=0\)

\(\Leftrightarrow5\left(x^2-\dfrac{2.3}{5}+\dfrac{9}{25}-\dfrac{9}{25}\right)+3=0\Leftrightarrow5\left(x-\dfrac{3}{5}\right)^2+\dfrac{6}{5}=0\)( vô lí )

vậy đa thức ko có nghiệm 

b, \(B\left(x\right)=4x^2-3x+7=0\Leftrightarrow4\left(x^2-\dfrac{2.3}{8}+\dfrac{9}{64}-\dfrac{9}{64}\right)+7=0\)

\(\Leftrightarrow4\left(x-\dfrac{3}{8}\right)^2+\dfrac{103}{64}=0\)( vô lí ) 

Vậy đa thức ko có nghiệm 

c, \(C\left(x\right)=5x^2-11x+6=0\Leftrightarrow5x^2-6x-5x+6=0\)

\(\Leftrightarrow5x\left(x-1\right)-6\left(x-1\right)=0\Leftrightarrow\left(5x-6\right)\left(x-1\right)=0\Leftrightarrow x=\dfrac{6}{5};x=1\)