Biểu thức sau đây xác định với giá trị nào của x :
a) \(\sqrt{5x^2-3x-8}\)
b) \(\sqrt{5x^2+4x+7}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: \(x\in R\)
b: ĐKXĐ: \(\left[{}\begin{matrix}x\ge5\\x\le-1\end{matrix}\right.\)
\(a,ĐK:x^2+2x+8\ge0\Leftrightarrow\left(x+1\right)^2+7\ge0\Leftrightarrow x\in R\\ b,ĐK:x^2-4x-5\ge0\Leftrightarrow\left(x+1\right)\left(x-5\right)\ge0\Leftrightarrow\left[{}\begin{matrix}x\le-1\\x\ge5\end{matrix}\right.\)
a/ ĐKXĐ : \(-2x+3\ge0\)
\(\Leftrightarrow x\le\dfrac{3}{2}\)
b/ ĐKXĐ : \(3x+4\ge0\)
\(\Leftrightarrow x\ge-\dfrac{4}{3}\)
c/ Căn thức \(\sqrt{1+x^2}\) luôn được xác định với mọi x
d/ ĐKXĐ : \(-\dfrac{3}{3x+5}\ge0\)
\(\Leftrightarrow3x+5< 0\)
\(\Leftrightarrow x< -\dfrac{5}{3}\)
e/ ĐKXĐ : \(\dfrac{2}{x}\ge0\Leftrightarrow x>0\)
P.s : không chắc lắm á!
a) ĐKXĐ: \(x\ge2\)
b) ĐKXĐ: \(\left[{}\begin{matrix}x\le1\\x\ge2\end{matrix}\right.\)
c) ĐKXĐ: \(\dfrac{x+3}{5-x}\ge0\)
\(\Leftrightarrow\dfrac{x+3}{x-5}\le0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+3\ge0\\x-5< 0\end{matrix}\right.\Leftrightarrow-3\le x< 5\)
a) Để \(\sqrt{\dfrac{x}{3}}\) có nghĩa thì \(\dfrac{x}{3}\ge0\Leftrightarrow x\ge0\)
b) Để \(\sqrt{-5x}\) có nghĩa thì \(-5x\ge0\Leftrightarrow x\le0\)
c) Để \(\sqrt{4-x}\) có nghĩa thì \(4-x\ge0\Leftrightarrow x\le4\)
d) Để \(\sqrt{3x+7}\) có nghĩa thì \(3x+7\ge0\Leftrightarrow x\ge-\dfrac{7}{3}\)
e) Để \(\sqrt{-3x+4}\) có nghĩa thì \(-3x+4\ge0\Leftrightarrow x\le\dfrac{4}{3}\)
f) Để \(\sqrt{\dfrac{1}{-1+x}}\) có nghĩa thì \(\left\{{}\begin{matrix}\dfrac{1}{-1+x}\ge0\\-1+x\ne0\end{matrix}\right.\)
\(\Leftrightarrow-1+x>0\Leftrightarrow x>1\)
g) Để \(\sqrt{1+x^2}\) có nghĩa thì \(1+x^2\ge0\left(đúng\forall x\right)\)
h) \(\sqrt{\dfrac{5}{x-2}}\) có nghĩ thì \(\left\{{}\begin{matrix}\dfrac{5}{x-2}\ge0\\x-2\ne0\end{matrix}\right.\)
\(\Leftrightarrow x-2>0\Leftrightarrow x>2\)
\(\sqrt{-x^2+5x-4}+\dfrac{1}{2x-7}\)
Được xác định khi:
\(\left\{{}\begin{matrix}-x^2+5x-4\ge0\\2x-7\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-\left(x-4\right)\left(x-1\right)\ge0\\2x\ne7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}\left\{{}\begin{matrix}-\left(x-4\right)\ge0\\x-1\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}-\left(x-4\right)< 0\\x-1< 0\end{matrix}\right.\end{matrix}\right.\\x\ne\dfrac{7}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}\left\{{}\begin{matrix}-x\ge-4\\x\ge1\end{matrix}\right.\\\left\{{}\begin{matrix}-x< -4\\x< 1\end{matrix}\right.\end{matrix}\right.\\x\ne\dfrac{7}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}\left\{{}\begin{matrix}x\le4\\x\ge1\end{matrix}\right.\\\left\{{}\begin{matrix}x>4\\x< 1\end{matrix}\right.\end{matrix}\right.\\x\ne\dfrac{7}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}1\le x\le4\\x\ne\dfrac{7}{2}\end{matrix}\right.\)
\(a,\)\(\sqrt{5x^2-3x-8}\)
\(đkxđ\Leftrightarrow5x^2-3x-8\ge0\)
\(\Rightarrow5x^2+5x-8x-8\ge0\)
\(\Rightarrow5x\left(x+1\right)-8\left(x+1\right)\ge0\)
\(\Rightarrow\left(x+1\right)\left(5x-8\right)\ge0\)
\(\Rightarrow\orbr{\begin{cases}x+1\ge0;5x-8\ge0\\x+1< 0;5x-8< 0\end{cases}\Rightarrow\orbr{\begin{cases}x\ge-1;x\ge\frac{8}{5}\\x< -1;x< \frac{8}{5}\end{cases}\Rightarrow}\orbr{\begin{cases}x\ge\frac{8}{5}\\x< -1\end{cases}}}\)
\(b,\)\(\sqrt{5x^2+4x+7}\)
\(đkxđ\Leftrightarrow5x^2+4x+7\ge0\)
\(\Rightarrow5\left(x^2+\frac{4}{5}x+\frac{7}{5}\right)\ge0\)
\(\Rightarrow5\left(x^2+2.\frac{2}{5}+\frac{4}{25}-\frac{4}{25}+\frac{7}{5}\right)\ge0\)
\(\Rightarrow5\left[\left(x+\frac{2}{5}\right)^2+\frac{31}{25}\right]\ge0\)
\(\Rightarrow5\left(x+\frac{2}{5}\right)^2+\frac{31}{5}\ge0\)( luôn đúng )
\(\Rightarrow\)Biểu thức được xác định với \(\forall x\)