K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) ĐKXĐ: \(x\ge2\)

b) ĐKXĐ: \(\left[{}\begin{matrix}x\le1\\x\ge2\end{matrix}\right.\)

c) ĐKXĐ: \(\dfrac{x+3}{5-x}\ge0\)

\(\Leftrightarrow\dfrac{x+3}{x-5}\le0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+3\ge0\\x-5< 0\end{matrix}\right.\Leftrightarrow-3\le x< 5\)

15 tháng 9 2021

a) Để \(\sqrt{\dfrac{x}{3}}\) có nghĩa thì \(\dfrac{x}{3}\ge0\Leftrightarrow x\ge0\)

b) Để \(\sqrt{-5x}\) có nghĩa thì \(-5x\ge0\Leftrightarrow x\le0\)

c) Để \(\sqrt{4-x}\) có nghĩa thì \(4-x\ge0\Leftrightarrow x\le4\)

d) Để \(\sqrt{3x+7}\) có nghĩa thì \(3x+7\ge0\Leftrightarrow x\ge-\dfrac{7}{3}\)

e) Để \(\sqrt{-3x+4}\) có nghĩa thì \(-3x+4\ge0\Leftrightarrow x\le\dfrac{4}{3}\)

f) Để \(\sqrt{\dfrac{1}{-1+x}}\) có nghĩa thì \(\left\{{}\begin{matrix}\dfrac{1}{-1+x}\ge0\\-1+x\ne0\end{matrix}\right.\)

\(\Leftrightarrow-1+x>0\Leftrightarrow x>1\)

g) Để \(\sqrt{1+x^2}\) có nghĩa thì \(1+x^2\ge0\left(đúng\forall x\right)\)

h) \(\sqrt{\dfrac{5}{x-2}}\) có nghĩ thì \(\left\{{}\begin{matrix}\dfrac{5}{x-2}\ge0\\x-2\ne0\end{matrix}\right.\)

\(\Leftrightarrow x-2>0\Leftrightarrow x>2\)

15 tháng 9 2021

a. \(x\ge0\)

b. \(x< 0\)

c. \(x\le4\)

d. \(x\ge\dfrac{-7}{3}\)

e. \(x\le\dfrac{4}{3}\)

f. \(x>1\)

g. Mọi x

h. \(x>2\)

27 tháng 11 2021

giúp mình với ạ :(((

 

a) ĐKXĐ: \(x\in R\)

b) ĐKXĐ: \(-2\sqrt{2}+2\le x\le2\sqrt{2}+2\)

$a)ĐK:8x+2\ge 0$

$\to 8x \ge -2$

$\to x \ge -\dfrac14$

$b)ĐK:\dfrac{-5}{6-3x} \ge 0(x \ne 2)$

Mà $-5<0$

$\to 6-3x<0$

$\to 6<3x$

$\to x>2$

$*A=x-2\sqrt{x-2}+3(x \ge 2)$

$=x-2-2\sqrt{x-2}+1+4$

$=(\sqrt{x-2}-1)^2+4 \ge 4$

Dấu "=" xảy ra khi $\sqrt{x-2}-1=0 \Leftrightarrow \sqrt{x-2}=1\Leftrightarrow x=3$

a) \(x\ge-\dfrac{1}{4}\)

b) x<2

24 tháng 9 2023

a) \(\sqrt{x^2-x+1}\)

\(=\sqrt{x^2-2\cdot\dfrac{1}{2}\cdot x+\dfrac{1}{4}+\dfrac{3}{4}}\)

\(=\sqrt{\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\)

Mà: \(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\)

Nên bt luôn có nghĩa

b) \(\dfrac{5}{\sqrt{1-\sqrt{x-1}}}\) có nghĩa khi:

\(\left\{{}\begin{matrix}x-1\ge0\\1-\sqrt{x-1}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x-1< 1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}1\le x\\x< 2\end{matrix}\right.\Leftrightarrow1\le x< 2\)

c) \(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\) có nghĩa khi:

\(x\ge0\)

d) \(\dfrac{\sqrt{-3x}}{x^2-1}\) có nghĩa khi:

\(\Leftrightarrow\left\{{}\begin{matrix}-3x\ge0\\x^2-1\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le0\\x\ne\pm1\end{matrix}\right.\)

e) \(\dfrac{2}{\sqrt{x}-2}\) có nghĩa khi:

\(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}-2\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

19 tháng 7 2021

a) để căn thức có nghĩa thì \(3x^2+1\ge0\) (luôn đúng) nên căn luôn có nghĩa

b) để căn thức có nghĩa thì \(4x^2-4x+1\ge0\Rightarrow\left(2x-1\right)^2\ge0\) (luôn đúng)

nên căn luôn có nghĩa

c) để căn thức có nghĩa thì \(\dfrac{3}{x+4}\ge0\) mà \(3>0\Rightarrow x+4>0\Rightarrow x>-4\)

h) để căn thức có nghĩa thì \(x^2-4\ge0\Rightarrow x^2\ge4\Rightarrow\left|x\right|\ge2\)

i) để căn thức có nghĩa thì \(\dfrac{2+x}{5-x}\ge0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2+x\ge0\\5-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}2+x\le0\\5-x< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}-2\le x< 5\\\left\{{}\begin{matrix}x\le-2\\x>5\end{matrix}\right.\left(l\right)\end{matrix}\right.\Rightarrow-2\le x< 5\)

a) ĐKXĐ: \(x\in R\)

b) ĐKXĐ: \(x\in R\)

c) ĐKXĐ: x>-4

h) ĐKXĐ: \(\left[{}\begin{matrix}x\ge2\\x\le-2\end{matrix}\right.\)

 

a: ĐKXĐ: \(x\ge\dfrac{1}{3}\)

b: ĐKXĐ: \(x< \dfrac{15}{2}\)

c: ĐKXĐ: \(x\le0\)

24 tháng 9 2021

\(1,\\ a,ĐK:x-2\ge0\Leftrightarrow x\ge2\\ b,ĐK:2-3x\ge0\Leftrightarrow x\le\dfrac{2}{3}\\ 2,\\ a,=\sqrt{16}-3\sqrt{4}=4-6=-2\\ b,=\dfrac{-\sqrt{7}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}=-\sqrt{7}\\ c,=\sqrt{4}\cdot\sqrt{36}=2\cdot6=12\\ d,=\sqrt{\dfrac{25}{81}}\cdot\sqrt{\dfrac{16}{49}}=\dfrac{5}{9}\cdot\dfrac{4}{7}=\dfrac{20}{63}\\ 3,\\ a,=\sqrt{19+2\sqrt{34}}-\sqrt{19-2\sqrt{34}}\\ =\sqrt{\left(\sqrt{17}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{17}-\sqrt{2}\right)^2}=\sqrt{17}+\sqrt{2}-\sqrt{17}+\sqrt{2}=2\sqrt{2}\\ b,=3-4+2\cdot5=9\)

\(4,ĐK:x\ge-5\\ PT\Leftrightarrow2\sqrt{x+5}-2\sqrt{x+5}+3\sqrt{x+5}=6\\ \Leftrightarrow\sqrt{x+5}=2\\ \Leftrightarrow x+5=4\Leftrightarrow x=-1\left(tm\right)\\ 5,\\ a,B=\dfrac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\left(\sqrt{x}+2\right)^2}{1-\sqrt{x}}=\dfrac{\sqrt{x}+2}{\sqrt{x}}\\ b,B=\dfrac{5}{2}\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}}=\dfrac{5}{2}\\ \Leftrightarrow2\sqrt{x}+4=5\sqrt{x}\\ \Leftrightarrow3\sqrt{x}=4\Leftrightarrow\sqrt{x}=\dfrac{4}{3}\Leftrightarrow x=\dfrac{16}{9}\)

24 tháng 9 2021

Cảm ơn bạn nhìu

 

2 tháng 10 2023

a) \(\sqrt{x-2}+\dfrac{1}{x-5}\) có nghĩa khi:
\(\left\{{}\begin{matrix}x-2\ge0\\x-5\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\ne5\end{matrix}\right.\)

b) \(\sqrt{\left(2x-6\right)\left(7-x\right)}=\sqrt{2\left(x-3\right)\left(7-x\right)}\) có nghĩa khi:

\(\left(x-3\right)\left(7-x\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-3\ge0\\7-x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-3\le0\\7-x\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge3\\x\le7\end{matrix}\right.\\\left\{{}\begin{matrix}x\le3\\x\ge7\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow3\le x\le7\)

c) \(\sqrt{4x^2-25}=\sqrt{\left(2x-5\right)\left(2x+5\right)}\) có nghĩa khi:

\(\left(2x-5\right)\left(2x+5\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-5\ge0\\2x+5\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-5\le0\\2x+5\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{5}{2}\\x\ge-\dfrac{5}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{5}{2}\\x\le-\dfrac{5}{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge\dfrac{5}{2}\\x\le-\dfrac{5}{2}\end{matrix}\right.\)

d) \(\dfrac{2}{x^2-9}-\sqrt{5-2x}=\dfrac{2}{\left(x+3\right)\left(x-3\right)}-\sqrt{5-2x}\) có nghĩa khi:

\(\left\{{}\begin{matrix}x+3\ne0\\x-3\ne0\\5-2x\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm3\\x\le\dfrac{5}{2}\end{matrix}\right.\)

e) \(\dfrac{x}{x^2-4}+\sqrt{x-2}=\dfrac{x}{\left(x+2\right)\left(x-2\right)}+\sqrt{x-2}\) có nghĩa khi:

\(\left\{{}\begin{matrix}x-2\ne0\\x+2\ne0\\x-2\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm2\\x\ge2\end{matrix}\right.\)

\(\Leftrightarrow x>2\)