K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2019

\(A=\left(x+3y-5\right)^2-6xy+26\)

\(=x^2+9y^2+25+6xy-30y-10x+26-6xy\)

\(=x^2+9y^2-10x+51-30y\)

\(=\left(x^2-10x+25\right)+\left(9y^2-30y+25\right)+1\)

\(=\left(x-5\right)^2+\left(3y-5\right)^2+1\ge1\)

Dấu = xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-5=0\\3y-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=\frac{5}{3}\end{matrix}\right.\)

Vậy \(Min_A=1\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=\frac{5}{3}\end{matrix}\right.\)

15 tháng 6 2019

Cho mình hỏi - 30y - 10x tách từ đâu ra ạ?

26 tháng 8 2019

Em thì cứ Bunyakovski thôi ạ:( ko chắc..

Theo BĐT Bunyakovski, ta có: \(\left(\sqrt{2x^2}^2+\sqrt{3y^2}^2\right)\left(\sqrt{\frac{1}{2}}^2+\sqrt{\frac{1}{3}}^2\right)\)

\(\ge\left(x+y\right)^2=5^2=25\)

Do đó \(2x^2+3y^2\ge\frac{25}{\sqrt{\frac{1}{2}}^2+\sqrt{\frac{1}{3}}^2}=30\) 

26 tháng 8 2019

Èo, em làm sai chỗ nào vậy???

23 tháng 1 2017

Chọn A

Ta có 

9 tháng 10 2015

a) 29

b)14

tick nhé,tớ thi violympic rồi

12 tháng 1 2015

Ta thấy:      |x-10| >= 0      (1);          |x-10| >= 0        (2)

Cộng 2 bđt cùng chiều (1) và (2) ta được:   |x-10| + |x-10| >= 0    <=>  A= |x-10| + |x-10| -2 >= -2

=> minA = -2  

Dấu đẳng thức xảy ra khi và chỉ khi x=10 và y=-100

 Chắc v!! =)))