Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì \(\left|x-5\right|\ge0\)nên \(100-\left|x-5\right|\le100\)
Để A lớn nhất thì \(\left|x-5\right|=0\Leftrightarrow x=-5\)
Vậy A lớn nhất bằng 100 khi và chỉ khi x= -5
b) Vì \(\left|y-3\right|\ge0\)nên \(\left|y-3\right|+50\ge50\)
Để B lớn nhất thì \(\left|y-3\right|=0\Leftrightarrow y=3\)
Vậy B nhỏ nhất bằng 50 khi và chỉ khi y= 3
a) *Xét x=0
==> Giá trị A=2022!(1)
*Xét 0<x≤2022
==> A=0(2)
*Xét x>2022
==> A≥2022!(3)
Từ (1),(2) và (3) ==> Amin=0 khi0<x≤2022
Mà để xmax ==> x=2022
Vậy ...
b)B=\(\dfrac{2018+2019+2020}{x-2021}\)=\(\dfrac{6057}{x-2021}\) (Điều kiện x-2021≠0 hay x≠2021)
Để Bmax ==> x-2021 là số tự nhiên nhỏ nhất
Mà x-2021≠0 =>x-2021=1==>x=2022
Khi đó Bmax=6057
Vậy...
Bài 8:
a) A = 2020 – |x + 3|
Có: |x + 3| ≥ 0
=> A ≤ 2020
Dấu ''='' xảy ra khi: |x + 3| = 0
=> x + 3 = 0
=> x = 0 - 3 = -3
Vậy: A sẽ đạt giá trị lớn nhất khi A = 2020 tại x = -3
b/ B = |x – 7| + 68
Có: |x – 7| ≥ 0
=> B ≥ 68
Dấu ''='' xảy ra khi: |x – 7| = 0
=> x - 7 = 0
=> x = 0 + 7 = 7
Vậy:.....
Bài 8
a , A = 2020 - | x + 3 |
Ta có \(\left|x+3\right|\ge0\forall x\)
\(\Leftrightarrow-\left|x+3\right|\le0\forall x\)
\(\Leftrightarrow2020-\left|x+3\right|\le2020\forall x\)
\(\Leftrightarrow A\le2020\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left|x+3\right|=0\)
\(\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=-3\)
Vậy MaxA = 2020 \(\Leftrightarrow x=-3\)
b) B = | x - 7 | + 68
Ta có \(\left|x-7\right|\ge0\forall x\)
\(\Leftrightarrow\left|x-7\right|+68\ge68\forall x\)
\(\Leftrightarrow B\ge68\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow\left|x-7\right|=0\)
\(\Leftrightarrow x-7=0\)
\(\Leftrightarrow x=7\)
Vậy Min B = 68 \(\Leftrightarrow x=7\)
~ Học tốt
# Chiyuki Fujito
" Cho hỏi 𝑆 = (6𝑚2 .......)
thì là 6 . m . 2 hay là \(6m^2\) và mấy cái kia nx"
để phân số trên có GTLN thì 4x+13 nhỏ nhất
=> 4x+13=1
<=>4x=-12
vì -12 là số âm mà 1 số dương nhân 1 số dương x ra âm đc nên
ko có giá trị thỏa mãn nào cả
ta có |x+3|>=0;|2y-14|>=0
=>|x+3|+|2y-14|>=0
=>S>=2016
dấu "=" xảy ra khi và chỉ khi (x+3)(2y-14)=0
=>x+3=0 và 2y-14=0
x=-3 và y=7
Vậy GTNN của S=2016 khi x=-3 và y=7
Ta thấy: |x-10| >= 0 (1); |x-10| >= 0 (2)
Cộng 2 bđt cùng chiều (1) và (2) ta được: |x-10| + |x-10| >= 0 <=> A= |x-10| + |x-10| -2 >= -2
=> minA = -2
Dấu đẳng thức xảy ra khi và chỉ khi x=10 và y=-100
Chắc v!! =)))