Tìm \(\left|-\frac{5}{2}\right|\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow20\left(x^2-4x+3\right)-24\left(4x^2-4x+1\right)=15\left(9x^2+6x+1\right)+90x\left(x-1\right)\)
\(\Leftrightarrow20x^2-80x+60-96x^2+96x-24=135x^2+90x+15+90x^2-90x\)
\(\Leftrightarrow-301x^2+16x+21=0\)
\(\text{Δ}=16^2-4\cdot\left(-301\right)\cdot21=25540\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là
\(\left\{{}\begin{matrix}x_1=\dfrac{-16-\sqrt{25540}}{-602}=\dfrac{16+\sqrt{25540}}{602}\\x_2=\dfrac{16-\sqrt{25540}}{602}\end{matrix}\right.\)
\(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)...\left(\frac{1}{2004}-1\right)\left(\frac{1}{2005}-1\right)\)
\(=\left(-\frac{1}{2}\right)\times\left(-\frac{2}{3}\right)\times...\times\left(-\frac{2003}{2004}\right)\times\left(-\frac{2004}{2005}\right)\)
\(=\frac{1}{2005}\)
***
\(\frac{4x}{2x-\frac{1}{5}}>0\)
\(\Leftrightarrow\begin{cases}4x>0\\2x-\frac{1}{5}>0\end{cases}\)
\(\Leftrightarrow\begin{cases}x>0\\x>\frac{1}{10}\end{cases}\)
\(\Leftrightarrow x>\frac{1}{10}\)
Theo đề
=> \(\left|2x-1\right|-\frac{1}{2}=\frac{4}{5}\) hoặc \(\left|2x-1\right|-\frac{1}{2}=-\frac{4}{5}\)
=> |2x - 1| = 13/10 hoặc |2x - 1| = -3/10 (vô lí, loại)
=> 2x - 1 = 13/10 hoặc 2x - 1 = -13/10
=> 2x = 23/10 hoặc 2x = -3/10
=> x = 23/20 hoặc x = -3/20
Vậy...
\(\left|\left|2x-1\right|-\frac{1}{2}\right|=\frac{4}{5}\)
TH1 : \(\left|2x-1\right|-\frac{1}{2}=\frac{4}{5}\Rightarrow\left|2x-1\right|=\frac{13}{10}\)
TH2 : \(\left|2x-1\right|-\frac{1}{2}=-\frac{4}{5}\Rightarrow\left|2x-1\right|=\frac{-3}{10}\) (loại )
Ta có :
\(\left|2x-1\right|=\frac{13}{10}\)
=> TH1 : \(2x-1=\frac{13}{10}\Rightarrow2x=\frac{23}{10}\Rightarrow x=\frac{23}{20}\)
TH2 : \(2x-1=\frac{-13}{10}\Rightarrow2x=\frac{-3}{10}\Rightarrow x=\frac{-3}{20}\)
Vậy x = \(\frac{23}{20}\)
hoặc x = \(\frac{-3}{20}\)
a)\(\left(2x-3\right)\left(x+1\right)< 0\)
\(\Leftrightarrow\begin{cases}2x-3>0\\x+1< 0\end{cases}\) hoặc \(\begin{cases}2x-3< 0\\x+1>0\end{cases}\)
\(\Leftrightarrow\begin{cases}x>\frac{3}{2}\\x< -1\end{cases}\) (loại) hoặc \(\begin{cases}x< \frac{3}{2}\\x>-1\end{cases}\)
\(\Leftrightarrow-1< x< \frac{3}{2}\)
b) \(\left(x-\frac{1}{2}\right)\left(x+3\right)>0\)
\(\Leftrightarrow\begin{cases}x-\frac{1}{2}>0\\x+3>0\end{cases}\) hoặc \(\begin{cases}x-\frac{1}{2}< 0\\x+3< 0\end{cases}\)
\(\Leftrightarrow\begin{cases}x>\frac{1}{2}\\x>-3\end{cases}\) hoặc \(\begin{cases}x< \frac{1}{2}\\x< -3\end{cases}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x>\frac{1}{2}\\x< -3\end{array}\right.\)
c) Sai đề phải là \(\frac{x}{\left(x+3\right)\left(x+7\right)}\)
Có: \(\frac{3}{\left(x+3\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+3\right)\left(x+17\right)}\)
\(\Leftrightarrow\)\(\frac{1}{x+3}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+7}=\frac{x}{\left(x+3\right)\left(x+7\right)}\)
\(\Leftrightarrow\)\(\frac{1}{x+3}-\frac{1}{x+7}=\frac{x}{\left(x+3\right)\left(x+7\right)}\)
\(\Leftrightarrow\)\(\frac{4}{\left(x+3\right)\left(x+7\right)}=\frac{x}{\left(x+3\right)\left(x+7\right)}\)
\(\Leftrightarrow x=4\)
\(\left|\frac{-5}{2}\right|=\frac{5}{2}\)
Tìm gì vậy?????????
Học tốt!!!!!!!!!!!!!!!
trả lời
=5/2
chúc bn
hc tốt