K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2019

Ta có \(A=\left(x+3\right)\left(x^2+1\right)\)

Mà A là lũy thừa số nguyên tố

=> \(\orbr{\begin{cases}x^2+1⋮x+3\\x+3⋮x^2+1\end{cases}}\)

+ Nếu \(x+3\ge x^2+1\)

=> \(-1\le x\le2\)

Thay vào ta được \(x=\left\{-1,0,1,2\right\}\)thỏa mãn đề bài 

+ Nếu \(x+3< x^2+1\)

=> \(\orbr{\begin{cases}x>2\\x< -1\end{cases}}\)

=> \(x^2+1=k\left(x+3\right)\)với k là số nguyên

=> \(k=\frac{x^2+1}{x+3}=\frac{x^2-9+10}{x+3}=x-3+\frac{10}{x+3}\)là số nguyên

=> \(x+3\in\left\{\pm1,\pm2,\pm5,\pm10\right\}\)

=> \(x\in\left\{-13,-8,-5,-4,-2,-1,2,7\right\}\)

Kết hợp với ĐK và thay vào ta được

\(x\in\left\{-2,-1,0,1,2\right\}\)

12 tháng 6 2019

Em nhầm xin lỗi

NV
24 tháng 3 2022

\(P=n^3+7n^2+25n+39=\left(n+3\right)\left(n^2+4n+13\right)\)

 Hiển nhiên \(\left\{{}\begin{matrix}n+3>1\\n^2+4n+13>1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}n+3=p^a\\n^2+4n+13=p^b\end{matrix}\right.\) với \(b>a>0\)

\(\Rightarrow\left\{{}\begin{matrix}n+3⋮p\\n^2+4n+13⋮p\end{matrix}\right.\) \(\Rightarrow n^2+4n+13-\left(n+3\right)\left(n+1\right)⋮p\)

\(\Rightarrow10⋮p\Rightarrow\left[{}\begin{matrix}p=2\\p=5\end{matrix}\right.\)

- TH1: \(p=2\Rightarrow n+3=2^a\)

Do n nguyên dương \(\Rightarrow n+3\ge4\Rightarrow a\ge2\Rightarrow2^a⋮4\)

\(\Rightarrow n+3⋮4\Rightarrow n=4k+1\)

Đồng thời \(n^2+4n+13=2^b\), hiển nhiên \(b>2\Rightarrow n^2+4n+13⋮4\)

\(\Rightarrow\left(4k+1\right)^2+4\left(4k+1\right)+13⋮4\)

\(\Rightarrow4k\left(4k+6\right)+18⋮4\) (vô lý) 

\(\Rightarrow p=2\) không thỏa mãn

TH2: \(p=5\) \(\Rightarrow\left\{{}\begin{matrix}n+3=5^a\\n^2+4n+13=5^b\end{matrix}\right.\)  

\(\Rightarrow\left(n+1\right)\left(n+3\right)+10=5^b\)

\(\Rightarrow5^a\left(5^a-2\right)+10=5^b\)

\(\Rightarrow5^{a-1}\left(5^a-2\right)+2=5^{b-1}\)

- Với \(a=1\Rightarrow b=2\)

- Với \(a>1\Rightarrow\) vế trái chia 5 dư 2, vế phải chia hết cho 5

\(\Rightarrow\) Không tồn tại a;b nguyên thỏa mãn

Vậy \(a=1\Rightarrow n=5^1-3=2\)

15 tháng 4 2019

Gọi n!+5=x3 (n,x thuộc N)

Xét n từ 0 đến 9: Chỉ có số 5 thỏa mãn điều kiện.

Xét n lớn hơn 10: Khi đó n! sẽ có ít nhất 2 thừa số 5 và 5 thừa số 2 => Sẽ có đuôi là 00 => n!+5 có đuôi là 05=> n!+5 chia hết cho 5=> x3 chia hết cho 5=> x chỉ có đuôi là 5 => x3 có đuôi là 25 hoặc 75=> không có số nào thỏa mãn đk.

Vậy n=5.

26 tháng 2 2021

Bài 1:

Nếu p = 2 thì p + 2 = 2 + 2 = 4 không là số nguyên tố

2 + 4 = 6 không là số nguyên tố

Vậy p = 2 không thỏa mãn

Nếu p = 3 thì p + 2 = 3 + 2 = 5 là số nguyên tố

3 + 4 = 7 là số nguyên tố

Vậy p = 3 thỏa mãn

Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2 

Khi p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) không là số nguyên tố

Vậy p = 3k + 1 không thỏa mãn

Khi p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố

Vậy p = 3k + 2 không thỏa mãn

Vậy p = 3 thỏa mãn duy nhất.

26 tháng 2 2021

Bài 2:

Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3

p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3

Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3

Vì thế 4p + 1 phải chia hết cho 3

Mà p > 3 nên 4p + 1 > 3

=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.