Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3/ => a(b-2) thuộc Ư(3) = {1;3;-1;-3}
Mà a > 0
=> a thuộc {1;3}
Ta có bảng kết quả:
a | 1 | 3 |
---|---|---|
b-2 | 3 | 1 |
b | 5 | 3 |
a) ta có: n+2 chia hết cho n-3
=>(n-3)+5 chia hết cho n-3
Mà n-3 chia hết cho n-3
=>5 chia hết cho n-3
=> n-3 thuộc Ư(5)={1;5;-1;-5}
=> n thuộc {4;8;2;-2}
b) Ta có: 6n+1 chia hết cho 3n-1
=>(6n-2)+2+1 chia hết cho 3n-1
=>2(3n-1) +3 chia hết cho 3n-1
Mà 2(3n-1) chia hết cho 3n-1
=> 3 chia hết cho 3n-1
=> 3n-1 thuộc Ư(3)={1;3;-1;-3}
=> 3n thuộc {2;4;0;-2}
=>n thuộc {2/3 ; 4/3 ; 0 ; -2/3}
Mà n thuộc Z
=>n=0
Để \(5n+19⋮n+3\)
\(\Rightarrow5n+15+4⋮n+3\)
\(\Rightarrow5\left(n+3\right)+4⋮n+3\)
Vì \(5\left(n+3\right)⋮n+3\Rightarrow4⋮n+3\Rightarrow n+3\inƯ\left(4\right)\Rightarrow n+3\in\left\{1;2;4\right\}\Rightarrow n\in\left\{-2;-1;1\right\}\)
Mà n là só tự nhiên => n = 1
Vậy n = 1
1. n không chia hết cho 3 suy ra n = 3k +1 hoặc n = 3k +2.
- nếu n = 3k +1 thì 5n + 1 = 5(3k +1) +1 = 15k + 6 ⋮ 3.
- nếu n = 3k +2 thì 5n + 2 = 5(3k + 2) +2 = 15k + 12 ⋮ 3
2. p là số nguyên tố lớn hơn 3 nên p sẽ có dạng 6k + 1 hoặc 6k + 5.
nếu p là 6k + 1 thì p + 2 = 6k + 3 ⋮ 3, không là số nguyên tố
do đó p có dạng 6k+5, khi đó p + 1 = 6k : 6 ⋮ 6.
3.
x(1-y) + 2(1-y) = 5
(x+2)(1-y) = 5
xét các trường hợp : x + 2 = 1; 1 - y = 5 và x + 2 = 5, 1 - y =1
4. ta có: n\(^2\) + 3 = (n+1)(n-1) + 4 ⋮ (n-1) khi 4 ⋮ (n-1), khi đó (n-1) \(\in\) Ư(4) .