K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Y
13 tháng 6 2019

\(\Leftrightarrow\sqrt{\left(\sqrt{x}+2\right)^2}+\sqrt{\left(\sqrt{x}-2\right)^2}=4\)

\(\Leftrightarrow\left|\sqrt{x}+2\right|+\left|\sqrt{x}-2\right|=4\)

+ Ta có : \(\left|\sqrt{x}+2\right|+\left|\sqrt{x}-2\right|=\left|\sqrt{x}+2\right|+\left|2-\sqrt{x}\right|\)

\(\ge\left|\sqrt{x}+2+2-\sqrt{x}\right|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\left(\sqrt{x}+2\right)\left(2-\sqrt{x}\right)\ge0\)

\(\Leftrightarrow0\le\sqrt{x}\le2\)

\(\Leftrightarrow0\le x\le4\) ( TM )

12 tháng 6 2019

ĐKXĐ: \(x\ge0\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x}+2\right)^2}+\sqrt{\left(\sqrt{x}-2\right)^2}=4\)

\(\Leftrightarrow\sqrt{x}+2+\left|\sqrt{x}-2\right|=4\)

Nếu x\(\ge4\Rightarrow\left|\sqrt{x}-2\right|=\sqrt{x}-2\)

\(\Rightarrow\sqrt{x}+2+\sqrt{x}-2=4\Leftrightarrow x=16\)(thoả mãn)

Nếu x<4\(\Rightarrow\left|\sqrt{x}-2\right|=2-\sqrt{x}\Rightarrow\sqrt{x}+2+2-\sqrt{x}=4\) (lđ)

AH
Akai Haruma
Giáo viên
4 tháng 9 2021

1. ĐKXĐ: $x\geq 4$

PT $\Leftrightarrow \sqrt{x-1}=5-\sqrt{x-4}$

$\Rightarrow x-1=25+x-4-10\sqrt{x-4}$

$\Leftrightarrow 22=10\sqrt{x-4}$

$\Leftrightarrow 2,2=\sqrt{x-4}$

$\Leftrightarrow 4,84=x-4\Leftrightarrow x=8,84$

(thỏa mãn)

2. ĐKXĐ: $x\geq 0$

PT $\Leftrightarrow (2x-2\sqrt{x})-(5\sqrt{x}-5)=0$

$\Leftrightarrow 2\sqrt{x}(\sqrt{x}-1)-5(\sqrt{x}-1)=0$

$\Leftrightarrow (\sqrt{x}-1)(2\sqrt{x}-5)=0$

$\Leftrightarrow \sqrt{x}-1=0$ hoặc $2\sqrt{x}-5=0$

$\Leftrightarrow x=1$ hoặc $x=\frac{25}{4}$ (tm)

AH
Akai Haruma
Giáo viên
4 tháng 9 2021

3. ĐKXĐ: $x\geq 3$

Bình phương 2 vế thu được:

$3x-2+2\sqrt{(2x+1)(x-3)}=4x$
$\Leftrightarrow 2\sqrt{(2x+1)(x-3)}=x+2$

$\Leftrightarrow 4(2x+1)(x-3)=(x+2)^2$

$\Leftrightarrow 4(2x^2-5x-3)=x^2+4x+4$
$\Leftrightarrow 7x^2-24x-16=0$

$\Leftrightarrow (x-4)(7x+4)=0$

Do $x\geq 3$ nên $x=4$

Thử lại thấy thỏa mãn

Vậy $x=4$

17 tháng 11 2021

Sửa: \(C=\left(\dfrac{\sqrt{x}+1}{x-4}-\dfrac{\sqrt{x}-1}{x+4\sqrt{x}+4}\right)\cdot\dfrac{x\sqrt{x}+2x-4\sqrt{x}-8}{\sqrt{x}}\)

\(C=\dfrac{\sqrt{x}+3\sqrt{x}+2-x+3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)^2}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)^2}{\sqrt{x}}\\ C=\dfrac{6\sqrt{x}}{\sqrt{x}}=6\)

\(Q=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-4\right)+9\sqrt{x}-4+\left(4x-4\sqrt{x}\right)\left(\sqrt{x}+4\right)}{x-16}\)

\(=\dfrac{x+4\sqrt{x}+4x\sqrt{x}+16x-4x-16\sqrt{x}}{x-16}\)

\(=\dfrac{13x+4x\sqrt{x}-12\sqrt{x}}{x-16}\)

 

23 tháng 6 2021

a) Áp dụng bđt AM-GM có:

\(\sqrt[3]{\left(9-x\right).8.8}\le\dfrac{9-x+8+8}{3}=\dfrac{25-x}{3}\)\(\Leftrightarrow\sqrt[3]{9-x}\le\dfrac{25-x}{12}\)

\(\sqrt[3]{\left(7+x\right).8.8}\le\dfrac{7+x+8+8}{3}=\dfrac{23+x}{3}\)\(\Leftrightarrow\sqrt[3]{7+x}\le\dfrac{23+x}{12}\)

Cộng vế với vế \(\Rightarrow\sqrt[3]{9-x}+\sqrt[3]{7+x}\le4\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}9-x=8\\7+x=8\end{matrix}\right.\)\(\Rightarrow x=1\)

Vậy...

b)Đk:\(x\ge2\)

Pt \(\Leftrightarrow\left(x-1\right)^2.\left(x^2-4\right)=\left(x-2\right)^2.\left(x^2-1\right)\)

\(\Leftrightarrow\left(x-1\right)^2\left(x-2\right)\left(x+2\right)=\left(x-2\right)^2\left(x+1\right)\left(x-1\right)\)

Do \(x\ge2\Rightarrow x-1>0\)

Chia cả hai vế của pt cho x-1 ta được:

\(\left(x-1\right)\left(x-2\right)\left(x+2\right)=\left(x-2\right)^2\left(x+1\right)\)

\(\Leftrightarrow\left(x-2\right)\left[\left(x-1\right)\left(x+2\right)-\left(x-2\right)\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2+x-2-x^2+3x-2\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(4x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=1\left(ktm\right)\end{matrix}\right.\)

Vậy S={2}

c)Đk:\(\left\{{}\begin{matrix}9-x^2\ge0\\x^2-1\ge0\\x-3\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}-3\le x\le3\\\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\\x\ge3\end{matrix}\right.\)\(\Rightarrow x=3\)

Thay x=3 vào pt thấy thỏa mãn

Vậy S={3}

23 tháng 6 2021

a) Quên mất, ko áp dụng đc AM-GM, xin lỗi

Pt \(\Leftrightarrow\sqrt[3]{9-x}-2=2-\sqrt[3]{7+x}\)

\(\Leftrightarrow\dfrac{9-x-8}{\sqrt[3]{\left(9-x\right)^2}+2\sqrt[3]{9-x}+4}=\dfrac{8-\left(7-x\right)}{4+2\sqrt[3]{7+x}+\sqrt[3]{\left(7+x\right)^2}}\)

\(\Leftrightarrow\dfrac{1-x}{\sqrt[3]{\left(9-x\right)^2}+2\sqrt[3]{9-x}+4}=\dfrac{1-x}{4+2\sqrt[3]{7+x}+\sqrt[3]{\left(7+x\right)^2}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\\dfrac{1}{\sqrt[3]{\left(9-x\right)^2}+2\sqrt[3]{9-x}+4}=\dfrac{1}{4+2\sqrt[3]{7+x}+\sqrt[3]{\left(7+x\right)^2}}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\sqrt[3]{\left(9-x\right)^2}+2\sqrt[3]{9-x}+4=4+2\sqrt[3]{7+x}+\sqrt[3]{\left(7+x\right)^2}\left(1\right)\end{matrix}\right.\)

Từ (1) \(\Leftrightarrow\sqrt[3]{\left(9-x\right)^2}-\sqrt[3]{\left(7+x\right)^2}+2\left(\sqrt[3]{9-x}-\sqrt[3]{7+x}\right)=0\)

\(\Leftrightarrow\left(\sqrt[3]{9-x}-\sqrt[3]{7+x}\right)\left(\sqrt[3]{9-x}+\sqrt[3]{7+x}\right)+2\left(\sqrt[3]{9-x}-\sqrt[3]{7+x}\right)=0\)

\(\Leftrightarrow\left(\sqrt[3]{9-x}-\sqrt[3]{7+x}\right).4+2\left(\sqrt[3]{9-x}-\sqrt[3]{7+x}\right)=0\)

\(\Leftrightarrow\sqrt[3]{9-x}-\sqrt[3]{7+x}=0\)

\(\Leftrightarrow\sqrt[3]{9-x}=\sqrt[3]{7+x}\)\(\Leftrightarrow9-x=7+x\)

\(\Leftrightarrow x=1\)

Vậy S={1}

5 tháng 7 2017

a) \(\sqrt{7-4\sqrt{3}}-\sqrt{7+4\sqrt{3}}\)

\(=\sqrt{4-4\sqrt{3}+3}-\sqrt{4+4\sqrt{3}+3}\)

\(=\sqrt{\left(2-\sqrt{3}\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\)

\(=\left|2-\sqrt{3}\right|-\left|2+\sqrt{3}\right|\)

\(=2-\sqrt{3}-2-\sqrt{3}\)

\(=-2\sqrt{3}\)

Ta có: \(\sqrt{x+4\sqrt{x}+4}+\sqrt{x-4\sqrt{x}+4}=4\)

\(\Leftrightarrow\sqrt{x}+2+\left|\sqrt{x}-2\right|=4\)

\(\Leftrightarrow\left|\sqrt{x}-2\right|=2-\sqrt{x}\)

\(\Leftrightarrow0\le x< 4\)

\(A=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)-\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)^2\cdot\left(\sqrt{x}-2\right)}\cdot\dfrac{x\sqrt{x}+2x-4\sqrt{x}-8}{\sqrt{x}}\)

\(=\dfrac{x+3\sqrt{x}+2-x+3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)^2}\cdot\dfrac{\left(\sqrt{x}+2\right)\left(x-4\right)}{\sqrt{x}}\)

=6