\(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\)( x>4)

rút gọn M

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2015

a)\(M=\sqrt{x+\sqrt{x^2-4}}\sqrt{x-\sqrt{x^2-4}}\)

=\(\sqrt{\left(x+\sqrt{x^2-4}\right)\left(x-\sqrt{x^2-4}\right)}\)

=\(\sqrt{x^2-\left(\sqrt{x^2-4}\right)^2}\)

=\(\sqrt{x^2-\left(x^2-4\right)}\)

=\(\sqrt{x^2-x^2+4}\)

=\(\sqrt{4}=2\)

b) vì M=2 nên giá trị của M không phụ thuộc vào giá trị của biến nên với

\(x=4+\sqrt{5}\)

thì giá trị của M vẫn là 4

2 tháng 7 2015

\(M\sqrt{x}=\sqrt{\left(x+2\right)+\left(x-2\right)+2\sqrt{\left(x-2\right)\left(x+2\right)}}+\sqrt{\left(x+2\right)+\left(x-2\right)-2\sqrt{\left(x-2\right)\left(x+2\right)}}\)

\(=\sqrt{\left(\sqrt{x+2}+\sqrt{x-2}\right)^2}+\sqrt{\left(\sqrt{x+2}-\sqrt{x-2}\right)^2}\)

\(=\sqrt{x+2}+\sqrt{x-2}+\sqrt{x+2}-\sqrt{x-2}=2\sqrt{x+2}\)

\(\Rightarrow M=\sqrt{2}\sqrt{x+2}\)

12 tháng 10 2018

các bạn giúp đi,mk kick cho

30 tháng 7 2017
  1. a.\(A=\sqrt{6+4\sqrt{2}}+\sqrt{6-4\sqrt{2}}\)

\(\sqrt{2}A=\sqrt{12+8\sqrt{2}}+\sqrt{12-8\sqrt{2}}\)

\(=\sqrt{\left(2\sqrt{2}+2\right)^2}+\sqrt{\left(2\sqrt{2}-2\right)^2}\)

\(=2\sqrt{2}+2+2\sqrt{2}-2=4\sqrt{2}\)

\(A=\frac{4\sqrt{2}}{\sqrt{2}}=4\)

30 tháng 7 2017

Bài 1:

a) \(\sqrt{6+4\sqrt{2}+\sqrt{6+4\sqrt{2}}}\)

\(=\sqrt{\left(2+\sqrt{2}\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}\)

\(=2+\sqrt{2}+\left|2-\sqrt{2}\right|\)

\(=2+\sqrt{2}+2-\sqrt{2}\)( Vì \(2>\sqrt{2}\))

\(=4\)

b) Hình như sai đầu bài

Bài 2

Ta có \(VP=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=\sqrt{3}+1-\left|\sqrt{3}-1\right|\)

\(=\sqrt{3}+1-\sqrt{3}+1\)

\(=2=VT\)

29 tháng 6 2016

đề có sai không zậy?

6 tháng 7 2016

1)\(M=\frac{x-7}{x-4\sqrt{x}+3}+\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}-3}\)(ĐKXĐ : \(x\ge0;x\ne1;x\ne9\))

\(=\frac{x-7}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{x-9}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+3}{\sqrt{x}-1}\)

2) \(M>\frac{3}{4}\Leftrightarrow\frac{\sqrt{x}+3}{\sqrt{x}-1}>\frac{3}{4}\Leftrightarrow1+\frac{4}{\sqrt{x}-1}-\frac{3}{4}>0\Leftrightarrow\frac{4}{\sqrt{x}-1}+\frac{1}{4}>0\Rightarrow\sqrt{x}-1>0\Leftrightarrow x>1\)Vậy \(M>\frac{3}{4}\Leftrightarrow\hept{\begin{cases}x>1\\x\ne9\end{cases}}\)