K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2019

Đề bài đúng: Cho a\(\ge\)\(\frac{1}{2}\).CMR: \(\sqrt{2a-1}\)\(\le\)a

Điều phải chứng minh tương đương với 

a2\(\ge\)2a-1

Mà điều này là hiểu nhiên vì nó tương đương với (a-1)2\(\ge\)

Vậy: \(\sqrt{2a-1}\)\(\le\)a Với a\(\ge\)\(\frac{1}{2}\)

Dấu đẳng thức xảy ra khi a=1

NV
3 tháng 6 2020

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{a}+\frac{1}{c}+\frac{1}{b}+\frac{1}{c}\ge4\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)\ge2\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge1\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z\ge1\)

\(P=\sqrt{x^2+2y^2}+\sqrt{y^2+2z^2}+\sqrt{z^2+2x^2}\)

\(\Rightarrow P\ge\sqrt{\frac{\left(x+2y\right)^2}{3}}+\sqrt{\frac{\left(y+2z\right)^2}{3}}+\sqrt{\frac{\left(z+2x\right)^2}{3}}\)

\(\Rightarrow P\ge\frac{1}{\sqrt{3}}\left(3x+3y+3z\right)\ge\frac{3}{\sqrt{3}}=\sqrt{3}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\) hay \(a=b=c=3\)

5 tháng 12 2018

\(\hept{\begin{cases}\frac{1}{\sqrt{2a+b+1}}+\frac{1}{\sqrt{2b+c+1}}+\frac{1}{\sqrt{2c+a+1}}=A\\\sqrt{2a+b+1}+\sqrt{2b+c+1}+\sqrt{2c+a+1}=B\end{cases}}\)(thật ra cx ko cần đặt,mk đặt làm cho gọn hơn thôi ^^)

Cauchy-Schwarz: \(A\ge\frac{9}{B}\)

Xét: \(B^2\le\left(1^2+1^2+1^2\right)\left(2a+b+1+2b+c+1+2c+a+1\right)=36\)

\(\Rightarrow B\le6\)

\(A\ge\frac{9}{B}\ge\frac{9}{6}=\frac{3}{2}\)

\("="\Leftrightarrow a=b=c=1\)

9 tháng 6 2019

Hỏi đáp Toán

NV
5 tháng 6 2020

Bạn tham khảo:

Câu hỏi của Phạm Vũ Trí Dũng - Toán lớp 8 | Học trực tuyến

12 tháng 10 2019

chuyển vế + quy đồng + rút gọn ta được: \(\frac{-\left(2a+b\right)^2}{ab\left(2a-b\right)}\ge0\) luôn đúng với mọi a>0>b

Dấu "=" xảy ra khi \(2a=-b\)

6 tháng 8 2020

Kiểm tra lại đề đê. Với [ a = 1/10, b = 1/3, c = 1/10 ] thì đề sai.

6 tháng 8 2020

(Đề đây nhưng chắc số 3 ở ngoài căn nha, họ đánh nhầm)