Tìm giá trị nhỏ nhất của :
a) A = \(x^2+x+1\) b) B = \(4x^2-3x+2\)
b) C = \(-3x^2+x+1\) d) D = \(ax^2+bx+c\) Với a > 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a) Ta có: \(A=25x^2-20x+7\)
\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)
\(=\left(5x-2\right)^2+3>0\forall x\)(đpcm)
d) Ta có: \(D=x^2-2x+2\)
\(=x^2-2x+1+1\)
\(=\left(x-1\right)^2+1>0\forall x\)(đpcm)
Bài 1:
a) Ta có: \(A=x^2-2x+5\)
\(=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi x=1
b) Ta có: \(B=x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
a: Ta có: \(x^2+x+1\)
\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)
b: Ta có: \(-x^2+x+2\)
\(=-\left(x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{9}{4}\right)\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
Bài 2 :
a) \(A=3,7+\left|4,3-x\right|\ge3,7\)
Min A = 3,7 \(\Leftrightarrow x=4,3\)
b) \(B=\left|3x+8,4\right|-14\ge-14\)
Min B = -14 \(\Leftrightarrow x=\frac{-14}{5}\)
c) \(C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)
Min C = 17,5 \(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{-3}{2}\end{cases}}\)
d) \(D=\left|x-2018\right|+\left|x-2017\right|\)
\(D=\left|2018-x\right|+\left|x-2017\right|\ge\left|2018-x+x-2017\right|=1\)
Min D =1 \(\Leftrightarrow\left(2018-x\right)\left(x-2017\right)\ge0\)
\(\Leftrightarrow2017\le x\le2018\)
\(A=3,7+\left|4,3-x\right|\)
Ta có \(\left|4,3-x\right|\ge0\Leftrightarrow A=3,7+\left|4,3-x\right|\ge3,7\)
Dấu '' = '' xảy ra \(\Leftrightarrow\left|4,3-x\right|=0\Leftrightarrow4,3-x=0\Leftrightarrow x=4,3\)
\(B=\left|3x+8,4\right|-14\)
Ta có \(\left|3x+8,4\right|\ge0\Leftrightarrow B=\left|3x+8,4\right|-14\ge-14\)
Dấu '' = '' xảy ra \(\Leftrightarrow\left|3x+8,4\right|=0\Leftrightarrow3x=-8,4\Leftrightarrow x=2,8\)
\(C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\)
Ta có \(\hept{\begin{cases}\left|4x-3\right|\ge0\\\left|5y+7,5\right|\ge0\end{cases}}\Leftrightarrow C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)
Dấu '' = '' xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|4x-3\right|=0\\\left|5y+7,5\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}}\)
\(D=\left|x-2018\right|+\left|x-2017\right|\)
\(\Leftrightarrow D=\left|x-2018\right|+\left|2017-x\right|\)
Áp dụng bất đẳng thức \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)ta có
\(D\ge\left|x-2018+2017-x\right|=\left|-1\right|=1\)
Dấu '' = '' xảy ra \(\Leftrightarrow\left(2017-x\right)\left(x-2018\right)\ge0\Leftrightarrow2018\ge x\ge2017\)
mấy câu trên thì dễ rồi,bn tự làm nhé:
d) D=x+|x|
Xét x \(\ge\) 0 thì D=x+x=2x \(\ge\) 0 (do x \(\ge\)0) (1)
Xét x < 0 thì D=x+(-x)=0 (2)
Từ (1);(2)
=> D \(\ge\) 0 =>GTNN của D là 0
Dấu "=" xảy ra <=> x\(\ge\) 0
a) A = 2.|3x-2|-1
Ta có: 2.|3x-2| \(\ge\)0.
Dấu "=" xảy ra khi 3x-2=0
=> 3x = 2
=> x = 2/3.
Vậy GTNN của A là -1 khi x = 2/3.
b) B = 5.|1-4x|-1
Ta có: 5.|1-4x|\(\ge\)0.
Dấu "=" xảy ra khi 1-4x=0
=>4x=1
=>x=1/4.
Vậy AMin=-1 khi x = 1/4.
c) C = x2+3.|y-2|-1
Ta có: x2\(\ge\)0; 3.|y-2|\(\ge\)0.
Dấu "=" xảy ra khi x = 0 và y-2=0
=> x = 0 và y = 2.
Vậy CMin=-1 khi x = 0, y = 2.
d) D = x + |x|
Ta có : |x| \(\ge\)0
Dấu "=" xảy ra khi x=0.
Vậy DMin = 0 khi x = 0.
Đặt A = \(2x^2-2x+1=2\left(x^2-x+\frac{1}{2}\right)=2\left(x^2-x+\frac{1}{4}+\frac{1}{4}\right)=2\left(x-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)
=> Min A = 1/2
Dấu "=" xảy ra <=> x - 1/2 = 0 <=> x = 1/2
Vậy Min A = 1/2 <=> x = 1/2
b) Đặt B = \(x^2-x+5=x^2-x+\frac{1}{4}+\frac{19}{4}=\left(x-\frac{1}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\)
=> Min B = 19/4
Dấu "=" xảy ra <=> x - 1/2 = 0 <=> x = 1/2
Vậy Min B = 19/4 <=> x =1/2
c) Đặt C = \(3x^2-4x+5=3\left(x^2-\frac{4}{3}x+\frac{5}{3}\right)=3\left(x-\frac{2}{3}\right)^2+\frac{11}{3}\ge\frac{11}{3}\)
=> Min C = 11/3
Dấu "=" xảy ra <=> x - 2/3 = 0 <=> x = 2/3
Vậy Min C = 11/3 <=> x = 2/3
d) Đặt D = \(2x^2+3x+5=2\left(x^2+\frac{3}{2}x+\frac{5}{2}\right)=2\left(x+\frac{3}{4}\right)^2+\frac{31}{8}\ge\frac{31}{8}\)
=> Min D = 31/8
Dấu "=" xảy ra <=> x + 3/4 = 0 <=> x =-3/4
Vậy Min D = 31/8 <=> x = -3/4
a.
+) Với x lớn hơn hoặc bằng 0
\(\Rightarrow A=2020-2x+\left|3+2x\right|=2020-2x+3+2x\)
\(=\left(2020+3\right)-\left(2x-2x\right)=2023\)
Vậy A có một giá trị duy nhất là 2023 với mọi x lớn hơn hoặc bằng 0
+) Với x < - 1
\(\Rightarrow A=2020-2x+\left|3+2x\right|=2020-2x-\left(3+2x\right)\)
\(=2020-2x-3-2x=2017-4x\ge2017\)
Dấu "=" xảy ra \(\Leftrightarrow4x=0\Leftrightarrow x=0\left(ktm\right)\)
+) Với x = - 1
\(\Rightarrow A=2020-2x+\left|3+2x\right|=2020-2\left(-1\right)+\left|3+2\left(-1\right)\right|\)
\(=2020+2+1=2023\left(tm\right)\)
Vậy A nhỏ nhất và có một giá trị duy nhất là 2023 \(\Leftrightarrow x\ge-1\)
a) vì \(x^2\ge0\)
Vậy để \(x^2\)nhỏ nhất thì\(x^2=0\)hay \(x=0\)
Khi đó \(GTNN_A=0^2+0+1=1\)
b) vì \(4x^2\ge0\)
Vậy để \(4x^2\)nhỏ nhất thì\(4x^2=0\)hay \(x=0\)
Khi đó \(GTNN_B=4.0^2-3.0+2=2\)
c) CÂU NÀY HÌNH NHƯ TÌM GIÁ TRỊ LỚN NHẤT(GTLN)
vì \(x^2\ge0\Leftrightarrow-3x^2\le0\)
Vậy để \(-3x^2\)lớn nhất thì \(-3x^2=0\)hay \(x=0\)
Khi đó \(GTLN_C=-3.0^2+0+1=1\)
d) vì \(ax^2\ge0\left(a>0\right)\)
Vậy để \(ax^2\)nhỏ nhất thì \(ax^2=0\)hay \(x=0\)
Khi đó \(GTNN_D=a.0^2+b.0+c=c\)
HOK TOT
A=x2+x+1=x2+x+1/4+3/4
=(x+1/2)2+3/4.
Vì: (x+1/2)2 lớn hơn hoặc bằng 0
nên: A lớn hơn hoặc bằng 0+3/4=3/4. Vậy giá trị nhỏ nhất của A là: 3/4
Dấu "=" xảy ra khi: x=1/2