K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2020

a.

+) Với x lớn hơn hoặc bằng 0

\(\Rightarrow A=2020-2x+\left|3+2x\right|=2020-2x+3+2x\)

\(=\left(2020+3\right)-\left(2x-2x\right)=2023\)

Vậy A có một giá trị duy nhất là 2023 với mọi x lớn hơn hoặc bằng 0

+) Với x < - 1

\(\Rightarrow A=2020-2x+\left|3+2x\right|=2020-2x-\left(3+2x\right)\)

\(=2020-2x-3-2x=2017-4x\ge2017\)

Dấu "=" xảy ra \(\Leftrightarrow4x=0\Leftrightarrow x=0\left(ktm\right)\)

+) Với x = - 1

\(\Rightarrow A=2020-2x+\left|3+2x\right|=2020-2\left(-1\right)+\left|3+2\left(-1\right)\right|\)

\(=2020+2+1=2023\left(tm\right)\)

Vậy A nhỏ nhất và có một giá trị duy nhất là 2023 \(\Leftrightarrow x\ge-1\)

18 tháng 8 2020

Bài 2 : 

a) \(A=3,7+\left|4,3-x\right|\ge3,7\)

Min A = 3,7 \(\Leftrightarrow x=4,3\)

b) \(B=\left|3x+8,4\right|-14\ge-14\)

Min B = -14 \(\Leftrightarrow x=\frac{-14}{5}\)

c) \(C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)

Min C = 17,5 \(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{-3}{2}\end{cases}}\)

d) \(D=\left|x-2018\right|+\left|x-2017\right|\)

\(D=\left|2018-x\right|+\left|x-2017\right|\ge\left|2018-x+x-2017\right|=1\)

Min D =1 \(\Leftrightarrow\left(2018-x\right)\left(x-2017\right)\ge0\)

\(\Leftrightarrow2017\le x\le2018\)

24 tháng 8 2021

\(A=3,7+\left|4,3-x\right|\)

Ta có \(\left|4,3-x\right|\ge0\Leftrightarrow A=3,7+\left|4,3-x\right|\ge3,7\)

Dấu '' = '' xảy ra \(\Leftrightarrow\left|4,3-x\right|=0\Leftrightarrow4,3-x=0\Leftrightarrow x=4,3\)

\(B=\left|3x+8,4\right|-14\)

Ta có \(\left|3x+8,4\right|\ge0\Leftrightarrow B=\left|3x+8,4\right|-14\ge-14\)

Dấu '' = '' xảy ra \(\Leftrightarrow\left|3x+8,4\right|=0\Leftrightarrow3x=-8,4\Leftrightarrow x=2,8\)

\(C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\)

Ta có \(\hept{\begin{cases}\left|4x-3\right|\ge0\\\left|5y+7,5\right|\ge0\end{cases}}\Leftrightarrow C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)

Dấu '' = '' xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|4x-3\right|=0\\\left|5y+7,5\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}}\)

\(D=\left|x-2018\right|+\left|x-2017\right|\)

\(\Leftrightarrow D=\left|x-2018\right|+\left|2017-x\right|\)

Áp dụng bất đẳng thức \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)ta có

\(D\ge\left|x-2018+2017-x\right|=\left|-1\right|=1\)

Dấu '' = '' xảy ra \(\Leftrightarrow\left(2017-x\right)\left(x-2018\right)\ge0\Leftrightarrow2018\ge x\ge2017\)

29 tháng 6 2021

`a)A=x(x+y)-x(y-x)`

`=x^2+xy-xy+x^2`

`=2x^2`

Thay `x=-3`

`=>A=2.9=18`

`b)B=4x(2x+y)+2y(2x+y)-y(y+2x)`

`=8x^2+4xy+4xy+2y^2-y^2-2xy`

`=8x^2+y^2+6xy`

Thay `x=1/2,y=-3/4`

`=>B=8*1/4+9/16-9/4`

`=2+9/16-9/4`

`=9/16-1/4=5/16`

3 tháng 5 2021

\(A=x^2-4x+10=x^2-4x+4+6=\left(x-2\right)^2+6\ge6\)

Vậy GTNN A là 6 khi x - 2 = 0 <=> x = 2 

\(B=\left(1-x\right)\left(3x-4\right)=3x-4-3x^2+4x=-3x^2+7x-4\)

\(=-3\left(x^2-\frac{7}{3}x+\frac{4}{3}\right)=-3\left(x^2-2.\frac{7}{6}x+\frac{49}{36}-\frac{1}{36}\right)=-3\left(x-\frac{7}{6}\right)^2+\frac{1}{12}\ge\frac{1}{12}\)

\(=3\left(x-\frac{7}{6}\right)^2-\frac{1}{12}\le-\frac{1}{12}\)Vậy GTLN B là -1/12 khi x = 7/6 

3 tháng 5 2021

\(C=3x^2-9x+5=3\left(x^2-3x+\frac{5}{3}\right)=3\left(x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{7}{12}\right)\)

\(=3\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\ge-\frac{7}{4}\)Vậy GTNN C là -7/4 khi x = 3/2 

\(D=-2x^2+5x+2=-2\left(x^2-\frac{5}{2}x-1\right)=-2\left(x^2-2.\frac{5}{4}x+\frac{25}{16}-\frac{41}{16}\right)\)

\(=-2\left(x-\frac{5}{4}\right)^2+\frac{21}{8}\le\frac{21}{8}\)Vậy GTLN D là 21/8 khi x = 5/4 

23 tháng 4 2022

\(a.A=\left(x-2\right)^2+\left(y+1\right)^2+1\ge1\forall x;y\) . " = " \(\Leftrightarrow x=2;y=-1\) 

b.\(B=7-\left(x+3\right)^2\le7\forall x\)  " = " \(\Leftrightarrow x=-3\)

c.\(C=\left|2x-3\right|-13\ge-13\forall x\)  " = " \(\Leftrightarrow x=\dfrac{3}{2}\)

d.\(D=11-\left|2x-13\right|\le11\forall x\)  " = " \(\Leftrightarrow x=\dfrac{13}{2}\)

23 tháng 4 2022

:o

AH
Akai Haruma
Giáo viên
21 tháng 5 2021

Lời giải:

1.

\(M(x)=A(x)-2B(x)+C(x)\)

\(2x^5 – 4x^3 + x^2 – 2x + 2-2(x^5 – 2x^4 + x^2 – 5x + 3)+ (x^4 + 4x^3 + 3x^2 – 8x + \frac{43}{16})\)

\(=5x^4+2x^2-\frac{21}{16}\)

2.

Khi $x=-\sqrt{0,25}=-0,5$ thì:

\(M(x)=5.(-0,5)^4+2(-0,5)^2-\frac{21}{16}=\frac{-1}{2}\)

3)

$M(x)=0$

$\Leftrightarrow 5x^4+2x^2-\frac{21}{16}=0$

$\Leftrightarrow 80x^4+32x^2-21=0$

$\Leftrightarrow 4x^2(20x^2-7)+3(20x^2-7)=0$

$\Leftrightarrow (4x^2+3)(20x^2-7)=0$

Vì $4x^2+3>0$ với mọi $x$ thực nên $20x^2-7=0$

$\Rightarrow x=\pm \sqrt{\frac{7}{20}}$

Đây chính là giá trị của $x$ để $M(x)=0$

2 tháng 9 2017

nhìu dữ

a)3/2

b)-1/3

c)-5/6

d)0

e)-1/2

Bài 2

a=3

b=1/2

c=-1/3

d=0

e=9

f=-2/3

2 tháng 9 2017

mk ko làm rõ đâu  nhe