K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2019

Ta có : 

\(3x^3-8x^2-2x+4=\left(3x-2\right)\left(x^2-2x-2\right)\)

\(\Leftrightarrow\left(3x-2\right)\left(x^2-2x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\x^2-2x-2=0\end{cases}}\)

Th1 : \(3x-2=0\Leftrightarrow3x=2\Leftrightarrow x=\frac{2}{3}\)

Th2: \(x^2-2x-2=0\)

\(\Leftrightarrow x^2-2x+1=3\)

\(\Leftrightarrow\left(x-1\right)^2=3\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=\sqrt{3}\\x-1=-\sqrt{3}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1+\sqrt{3}\\x=1-\sqrt{3}\end{cases}}}\)

Vậy phương trình có 3 nghiệm : \(x=1\)\(x=1\pm\sqrt{3}\)

5 tháng 6 2019

\(3x^3-8x^2-2x+4=0\)

\(\Leftrightarrow\left(3x-2\right)\left(x^2-2x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\x^2-2x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=1\pm\sqrt{3}\end{cases}}\)

Vậy tập nghiệm của phương trình \(S=\left\{\frac{2}{3};1\pm\sqrt{3}\right\}\)

29 tháng 6 2016

\(\Leftrightarrow3x^3-2x^2-6x^2+4x-6x+4=0\)

\(\Leftrightarrow x^2\left(3x-2\right)-2x\left(3x-2\right)-2\left(3x-2\right)=0\)

\(\Leftrightarrow\left(3x-2\right)\left(x^2-2x-2\right)=0\)

\(\Leftrightarrow x=\frac{2}{3}\)

3 tháng 2 2019

\(2x^3+7x^2+7x+2=0\)

\(\Leftrightarrow\left(2x^3+4x^2\right)+\left(3x^2+6x\right)+\left(x+2\right)=0\)

\(\Leftrightarrow2x^2\left(x+2\right)+3x\left(x+2\right)+\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(2x^2+3x+1\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left[2x\left(x+1\right)+\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+1\right)\left(2x+1\right)=0\)

.......................................................................................

\(x^3-8x^2-8x+1=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)-8x\left(x+1\right)=0\)

......................................................................................

11 tháng 2 2019

cảm ơn nha 

20 tháng 6 2017

b)\(3x^3+6x^2-75x-150=0\Leftrightarrow3\left(x^3+2x^2-25x-50\right)=0\Leftrightarrow x^3+2x^2-25x-50=0\)

<=>\(x^2\left(x+2\right)-25\left(x+2\right)=0\Leftrightarrow\left(x^2-25\right)\left(x+2\right)=0\Leftrightarrow\left(x-5\right)\left(x+5\right)\left(x+2\right)=0\)

<=>x-5=0 hoặc x+5=0 hoặc x+2=0<=>x=5 hoặc x=-5 hoặc x=-2

c)\(2x^5-3x^4+6x^3-8x^2+3=0\Leftrightarrow2x^5+x^4-4x^4-2x^3+8x^3+4x^2-12x^2+3=0\)

<=>\(x^4\left(2x+1\right)-2x^3\left(2x+1\right)+4x^2\left(2x+1\right)-3\left(4x^2-1\right)=0\)

<=>\(x^4\left(2x+1\right)-2x^3\left(2x+1\right)+4x^2\left(2x+1\right)-3\left(2x-1\right)\left(2x+1\right)=0\)

<=>\(\left(2x+1\right)\left(x^4-2x^3+4x^2-6x+3\right)=0\)

<=>\(\left(2x+1\right)\left(x^4-2x^3+x^2+3x^2-6x+3\right)=0\)

<=>\(\left(2x+1\right)\left[x^2\left(x^2-2x+1\right)+3\left(x^2-2x+1\right)\right]=0\)

<=>\(\left(2x+1\right)\left(x^2+3\right)\left(x^2-2x+1\right)=0\Leftrightarrow\left(2x+1\right)\left(x^2+3\right)\left(x-1\right)^2=0\)

Vì \(x^2\ge0\Rightarrow x^2+3\ge3>0\Rightarrow\orbr{\begin{cases}2x+1=0\\\left(x-1\right)^2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=1\end{cases}}\)

20 tháng 6 2017

a) 2x3 - x2 - 8x + 4 = 0

x2.(2x - 1) - 4.(2x - 1) = 0

(x2 - 4)(2x - 1) = 0

\(\Rightarrow\orbr{\begin{cases}x^2-4=0\\2x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x^2=4\\x=\frac{1}{2}\end{cases}}\)

Với x2 = 4

=> x = 2 hoặc x = -2

=> x = {-2 ; 2 ; \(\frac{1}{2}\))

a:=>6x^2-8x+4x-6x^2<-4

=>-4x<-4

=>x>1

b: =>6x+8x^2-8x^2-24x>5

=>-18x>5

=>x<-5/18

12 tháng 4 2023

a)\(6x^2-8x+2x\left(2-3x\right)< -4\)

\(\Leftrightarrow6x^2-8x+4x-6x^2< -4\)

\(\Leftrightarrow-4x< -4\)

\(\Leftrightarrow-4x.\dfrac{-1}{4}>-4\cdot\dfrac{-1}{4}\)

\(\Leftrightarrow x>1\)

Vậy bất phương trình có nghiệm là \(S=\left\{xIx>1\right\}\)

b)\(2\left(3x+4x^2\right)-8x\left(x+3\right)>5\)

\(\Leftrightarrow6x+8x^2-8x^2-24x>5\)

\(\Leftrightarrow-18x>5\)

\(\Leftrightarrow-18x\cdot\dfrac{-1}{18}< 5\cdot\dfrac{-1}{18}\)

\(\Leftrightarrow x< -\dfrac{5}{18}\)

Vậy bất phương trình có nghiệm là \(S=\left\{xIx< -\dfrac{5}{18}\right\}\)

13 tháng 4 2023

cái này là tập nghiệm chứ bạn

9 tháng 9 2015

a. Phương trình tương đương với \(\left(x^2-2x-1\right)\left(x^2+2x+3\right)=0\leftrightarrow x=1\pm\sqrt{2}.\)

b. Nhân cả hai vế với 3, phương trình tương đương với \(27-27x+9x^2-x^3=2x^3\leftrightarrow\left(3-x\right)^3=2x^3\leftrightarrow3-x=\sqrt[3]{2}x\leftrightarrow x=\frac{3}{1+\sqrt[3]{2}}\leftrightarrow x=\sqrt[3]{4}-\sqrt[3]{2}+1.\)

13 tháng 3 2018

Ai đó giải cụ thể hơn đc không