Cho tâm giác ABC. Về phía ngoài vẽ 3 tam giác đều ABC1,BCA1,CAB1. Chứng minh AA1,BB1,CC1 bằng nhau và đồng quy.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử →A1B=k→A1C;→B1C=m→B1A;→C1A=n→C1BA1B→=kA1C→;B1C→=mB1A→;C1A→=nC1B→
Theo giả thiết ta có : →AA1+→BB1+→CC1=⃗0=>→CA1+→AB1+→BC1=⃗0=>11−k→BC+11−n→AB+11−m→CA=⃗0AA1→+BB1→+CC1→=0→=>CA1→+AB1→+BC1→=0→=>11−kBC→+11−nAB→+11−mCA→=0→
hay →BC=1−k1−m→AC+1−k1−n→BABC→=1−k1−mAC→+1−k1−nBA→
mà →BC=→BA+→ACBC→=BA→+AC→
=> 1−k1−m=1;1−k1−n=11−k1−m=1;1−k1−n=1
=> k=m=nk=m=n
Theo định lí Cê va cho 3 đường đồng quy : kmn=−1kmn=−1=>k=m=n=−1k=m=n=−1
-> A1,B1,C1 là trung điểm BC,CA,AB
-> tam giác ABC đều
Kẻ DM ∟ AC sao cho DM = AB.
Dễ dàng chứng minh Δ DMC = Δ AEB (c - g - c)
=> ^DCM = ^AEB và BE = MC (1)
Δ BMD = Δ BED (c - g - c)
=> ^BMD = ^BED và BM = BE (2)
(1) và (2) cho:
^DCM = ^BMD và CM = MB
=> Δ BMC cân tại M
mà ^DMC + ^DCM = 90o (Δ MDC vuông)
=> ^DMC + ^BMD = 90o
=> Δ BMC vuông cân.
=> BCM = 45o
Mà ^ACB + ^DCM = ^BCM
=> ^ACB + ^AEB = 45o (vì ^AEB = ^DCM (cmt))
Cách 2:
Đặt AB = a
ta có: BD = a√2
Do DE/DB = DB/DC = 1/√2
=> Δ DBC đồng dạng Δ DEB (c - g - c)
=> ^DBC = ^DEB
Δ BDC có ^ADB góc ngoài
=> ^ADB = ^DCB + ^DBC
hay ^ACB + ^AEB = 45o
Cách 3
ta có:
tanAEB = AB/AE = 1/2
tanACB = AB/AC = 1/3
tan (AEB + ACB) = (tanAEB + tanACB)/(1 - tanAEB.tanACB)
= (1/2 + 1/3)/(1 - 1/2.1/3) = 1 = tan45o
Vậy ^ACB + ^AEB = 45o
Kẻ DM ∟ AC sao cho DM = AB.
Dễ dàng chứng minh Δ DMC = Δ AEB (c - g - c)
=> ^DCM = ^AEB và BE = MC (1)
Δ BMD = Δ BED (c - g - c)
=> ^BMD = ^BED và BM = BE (2)
(1) và (2) cho:
^DCM = ^BMD và CM = MB
=> Δ BMC cân tại M
mà ^DMC + ^DCM = 90o (Δ MDC vuông)
=> ^DMC + ^BMD = 90o
=> Δ BMC vuông cân.
=> BCM = 45o
Mà ^ACB + ^DCM = ^BCM
=> ^ACB + ^AEB = 45o (vì ^AEB = ^DCM (cmt))
Bạn xem ở đây nhé
Câu hỏi của Nguyễn Thị Thùy Dung - Toán lớp 9 | Học trực tuyến
Bạn xem ở đây nhé.
Câu hỏi của Nguyễn Thị Thùy Dung - Toán lớp 9 | Học trực tuyến
Gọi O là giao điểm của AA1 và CC1. Ta chứng minh \(\widehat{AOB}+\widehat{AOB_1}=180^o\).
Ta có: \(\Delta C_1BC=\Delta ABA_1\) vì \(C_1B=AB\), BC=BA1, góc C1BC = góc ABA1 (=góc ABC+60độ).
Suy ra \(\widehat{BC_1C}=\widehat{BAA_1}\) suy tiếp \(C_1BOA\) là tứ giác nội tiếp đường tròn.
\(\Rightarrow\widehat{AC_1B}+\widehat{AOB}=180^o\) \(\Rightarrow\widehat{AOB}=120^o\) và \(\widehat{C_1OB}=\widehat{C_1OA}=60^o\) (cùng chắn hai cung có độ dài bằng nhau).
Tương tự ta có các góc AOB1, B1OC, COA1, A1OB đều bằng 60 độ.
Suy ra \(\widehat{AOB}+\widehat{AOB_1}=180^o\)
Vậy BOB1 thẳng hàng