chứng minh a/b < 1 suy ra a/b < a+n/b+n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Vì m > 2
\(\Rightarrow\) m - 2 > 2 - 2
\(\Rightarrow\) m(m - 2) > m(2 - 2)
\(\Rightarrow\) m2 - 2m > 0
a < 0; b < 0; a > b
\(\Rightarrow\) \(\frac{1}{a}< \frac{1}{b}\) (Vì mẫu a > b nên phân số \(\frac{1}{a}< \frac{1}{b}\))
Bạn ơi, đề cho a > b thì làm sao chứng minh được a \(\ge\) b hả bạn
Chúc bn học tốt!!
Ta có:
\(\frac{a}{b}< 1\Rightarrow a< b\)
\(\Rightarrow ac< bc\)
\(\Rightarrow ac+ab< bc+ab\)
\(\Rightarrow a\left(b+c\right)< b\left(c+a\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+c}\)
Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath
a, Ta có : m\n = m.q\n.q , p\q = p.n\q.n
Vì m\n < p\q suy ra mq\nq < np\nq
Vì n>0 , q>0 suy ra n.q > 0
Từ đó suy ra mq < np ( đây là điều phải chứng minh ).
ta có
a<b<c=>3a<a+b+c
d<m<n=>3d<d+m+n
=>3a+3d<a+b+c+d+m+n
=>3a+3a/a+b+c+d+m+n<a+b+c+m+n+d/a+b+c+d+m+n
=>3(a+d)/a+b+c+d+m+n)<1
=>a+d/a+b+c+d+m+n<1/3 (đpcm)
copy
a<b<c<d<m<n =>a+b+c+d+m+n>a+b+a+b+a+b=3(a+b)
\(\Rightarrow\frac{a+b}{a+b+c+d+m+n}<\frac{a+b}{3\left(a+b\right)}=\frac{1}{3}\)
=>đpcm
thêm đk a,b,n dương
Có a/b<1
=>a<b
<=> an<bn
<=> an+ab<bn+ab
<=> a(b+n)<b(a+n)
\(\Leftrightarrow\frac{a}{b}< \frac{a+n}{b+n}\)
đpcm