![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1. Do \(\frac{a}{b}< 1\Leftrightarrow\)a<b \(\Leftrightarrow\)a+n<b+n
Ta có: \(\frac{a}{b}\)= 1 - \(\frac{a-b}{b}\)
\(\frac{a+n}{b+n}\)= 1- \(\frac{a-b}{b+n}\)
Do \(\frac{a-b}{b}\)>\(\frac{a-b}{b+n}\)=> \(\frac{a}{b}\)<\(\frac{a+n}{b+n}\)
2.Tương tự
![](https://rs.olm.vn/images/avt/0.png?1311)
Đề bài
M = - a + b - b - c + a + c - a
M = ( - a + a ) + ( b - b ) + ( - c + c ) - a
M = 0 + 0 + 0 + ( - a )
M = - a
Mà - a < 0 suy ra M > 0
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có
a,\(\frac{a}{b}< 1\Leftrightarrow a< b\Leftrightarrow a+m< b+m\)
vì \(a+m< b+m\)
nên \(\frac{a+m}{b+m}< 1\)
b,Ta có \(a+b>1\Leftrightarrow a+m>b+m\)
Vì \(a+m>b+m\)
nên \(\frac{a+m}{b+m}>1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
a.
$\frac{a}{b}<1\Rightarrow a< b\Rightarrow a-b<0$
Xét hiệu $\frac{a}{b}-\frac{a+m}{b+m}=\frac{am-bm}{b(b+m)}=\frac{m(a-b)}{b(b+m)}<0$ do $a-b<0$ và $a,b,m$ là số tự nhiên $>0$
$\Rightarrow \frac{a}{b}<\frac{a+m}{b+m}$
b.
$\frac{a}{b}>1\Rightarrow a> b\Rightarrow a-b>0$
Xét hiệu $\frac{a}{b}-\frac{a+m}{b+m}=\frac{am-bm}{b(b+m)}=\frac{m(a-b)}{b(b+m)}>0$ do $a-b>0$ và $a,b,m$ là số tự nhiên $>0$
$\Rightarrow \frac{a}{b}>\frac{a+m}{b+m}$
![](https://rs.olm.vn/images/avt/0.png?1311)
M=(-a+b)-(b+c-a) +(c-a)
=-a+b-b-c+a+c-a
=-a
nếu a<0 thì -a>0 khi đó M>0 (dpcm)
M = (-a + b) - (b + c - a) + (c - a)
= -a + b - b - c + a + c - a
= (a - a) + (b - b) + (c - c) - a
= -a
Vậy nếu a là số âm(a >0) thì -a là số dương vì -a là số đối của a
Do đó M la dương hay M > 0