K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2019

Hình:bạn tự vẽ

a)Xét \(\Delta {AHB}\)\(\Delta AHC\) ta có:

AH chung

AB=AC

\(\widehat{BAH}=\widehat{CAH}\) (AH là tia phân giác của \(\widehat{A}\))

Do đó \(\Delta {AHB}\) =\(\Delta AHC\)(c-g-c)

b)Vì \(\Delta ABC \) cân mà có AH là đường cao nên AH đồng thời là đường trung trực

\(\Rightarrow\)\(AH \perp BC\)

\(BH=CH \) =\(\dfrac{1}2BC\)

\(BC=10cm\)

=>\(BH=CH \)=\(\dfrac{1}2 10\) =5cm

\(\Delta ABH \) là tam giác vuông nên:

Áp dụng định lý Py-ta-go ta có:

\(AB^2=AH^2+BH^2\)

\(=>\) \(AH^2=AB^2-BH^2\)

=\(13^2-5^2 \)

\(=144\)

\(=>AH=12\)cm

c)Vì CI đi qua trung điểm của BD

DH đi qua trung điểm của BC

Do đó CI và DH là đường trung tuyến của \(\Delta BDC\),mà CI và DH cùng đi qua E

Do đó E là trọng tâm của \(\Delta BDC\)

Mà BK đi qua trung điểm của DC do đó BK là đường trung tuyến thứ ba của \(\Delta BDC\)

Vì BE=\(\dfrac{2}3 BK\) (1)

=> KE \(= \dfrac {1}{2}\)BK(2)

Từ (1),(2) ta có:

BE =2KE

12 tháng 5 2019

Cảm ơn bn nhiều nha ❤❤

24 tháng 1 2020

A B C K I M N H

  GT  

 △ABC cân tại A. AB = AC = 13cm. BC = 24cm.

 AH ⊥ BC (H \in  BC). BK = CI. BM ⊥ AK. CN ⊥ AI

  KL

 a, △AHC = △AHB

 b, AH = ?

 c, △ABK = △ACI

 d, △MBK = △NCI

Bài giải:

a, Vì △ABC cân tại A (gt) => AB = AC và ABC = ACB

Xét △AHC vuông tại H và △AHB vuông tại H

Có: AH là cạnh hcung

       AC = AB (cmt)

=> △AHC = △AHB (ch-cgv)

b, Ta có: BC = BH + HC

Mà BC = 24 cm

=> BH + HC = 24 cm

Mà HC = HB (△AHC = △AHB)

=> HC = HB = 24 : 2 = 12 (cm)

Xét △ABH vuông tại H có: AH2 + BH2 = AB2 (định lý Pytago)

=> AH2 + 122 = 132 => AH2 = 25 => AH = 5

c, Ta có: ABK + ABC = 180o (2 góc kề bù)

ACI + ACB = 180o (2 góc kề bù)

Mà ABC = ACB (cmt)

=> ABK = ACI

Xét △ABK và △ACI 

Có: AB = AC (cmt)

    ABK = ACI (cmt)

      BK = CI (gt)

=> △ABK = △ACI (c.g.c)

d, Xét △MBK vuông tại M và △NCI vuông tại N

Có: BK = CI (gt)

    MKB = NIC (△ABK = △ACI)

=> △MBK = △NCI (ch-gn)

30 tháng 3 2022

undefinedundefined

30 tháng 3 2022

Câu b mik làm nhầm r nha 

a: HB=HC=căn 10^2-8^2=6cm

b: Xét ΔBAD có

BH vừa là đường cao, vừa là trung tuyến

=>ΔBAD can tại B

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC
AH chung

=>ΔAHB=ΔAHC

=>góc BAH=góc CAH

=>AH là phân giác của góc BAC

b: Xét ΔAMH vuông tại M và ΔANH vuông tại N có

AH chung

góc MAH=góc NAH

=>ΔAMH=ΔANH

=>AM=AN và MH=MN

=>AH là trung trực của MN

a) Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔAHB=ΔAHC(Cạnh huyền-cạnh góc vuông)

b) Ta có: ΔAHB=ΔAHC(cmt)

nên HB=HC(hai cạnh tương ứng)

Ta có: AB=AC(ΔABC cân tại A)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: HB=HC(cmt)

nên H nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AH là đường trung trực của BC

mà I\(\in\)AH(gt)

nên IH là đường trung trực của BC

\(\Leftrightarrow\)I nằm trên đường trung trực của BC

\(\Leftrightarrow IB=IC\)(Tính chất đường trung trực của một đoạn thẳng)

mà IB=ID(gt)

nên ID=IC(đpcm)

12 tháng 7 2018

a, Xét t/g AHC và t/g DHC có:

AH = DH (gt)

góc AHC = góc DHC = 90 độ

HC chung

=> t/g AHC = t/g DHC (c.g.c) (đpcm)

b, Áp dụng định lí pytago vào t/g ABC vuông tại A ta có:

AB2 + AC2 = BC2

=> AC2 = BC2 - AB2 = 102 - 62 = 64 = 82

=> AC = 8 (cm)

c, Xét t/g AHB và t/g DHE có:

AH = DH (gt)

góc AHB = góc DHE (đối đỉnh)

BH = EH (gt)

=> t/g AHB = t/g DHE (c.g.c) (đpcm)

=> góc HBA = góc DEH (2 góc tương ứng)

Mà 2 góc này nằm ở vị trí so le trong

=> AB // DE 

Mà AB _|_ AC

=> DE _|_ AC (đpcm)

d, Vì t/g AHC = t/g DHC (câu a) => AC = CD (2 cạnh tương ứng) (1)

Xét t/g AHB và t/g AHE có:

BH = BE (gt)

góc AHB = góc AHE = 90 độ

AH chung

=> t/g AHB = t/g AHE (c.g.c)

=> AB = AE (2 cạnh tương ứng) (2)

Xét t/g ABC có: AB + AC > BC (BĐT tam giác) (3)

Từ (1),(2),(3) =>  AE + CD > BC (đpcm)