K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2016

\(\frac{1}{h}=\frac{1}{2}.\left(\frac{1}{a}+\frac{1}{b}\right)\Rightarrow\frac{1}{h}=\frac{1}{2}.\frac{a+b}{ab}\Rightarrow\frac{1}{h}=\frac{a+b}{2ab}\)

\(\Rightarrow2ab=h\left(a+b\right)\Rightarrow ab+ab=ha+hb\)

\(\Rightarrow ab-hb=ah-ab\)

\(\Rightarrow\left(a-h\right).b=\left(h-b\right).a\)

\(\Rightarrow\frac{a-h}{h-b}=\frac{a}{b}\) (đpcm)

8 tháng 7 2016

cam on

 

 

2 tháng 8 2017

 o0oNguyễno0o bn giúp mk nha bài này khó wa

2 tháng 8 2017

 Harry Potter05 giúp mk đc ko vậy bn!!!

20 tháng 2 2017

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

+) Xét \(a+b+c=0\Rightarrow\left\{\begin{matrix}a+b=-c\\b+c=-a\\a+c=-b\end{matrix}\right.\)

\(B=\left(1+\frac{b}{a}\right).\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}.\frac{a+c}{c}.\frac{b+c}{b}=\frac{-c}{a}.\frac{-b}{c}.\frac{-a}{b}=-1\)

+) Xét \(a+b+c\ne0\)

\(\left\{\begin{matrix}\frac{a+b-c}{c}=2\\\frac{b+c-a}{a}=2\\\frac{c+a-b}{b}=2\end{matrix}\right.\Rightarrow\left\{\begin{matrix}a+b=3c\\b+c=3a\\a+c=3b\end{matrix}\right.\)

\(B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}.\frac{a+c}{c}.\frac{b+c}{b}=\frac{3c}{a}.\frac{3b}{c}.\frac{3a}{b}\)

\(=3.3.3=27\)

Vậy B = -1 hoặc B = 27

Bài làm

Theo công thức tính diện tích hình thang:

Đáy lớn và đáy nhỏ

Ta mang cộng vào

Cộng vào nhân với chiều cao

Chia đôi lấy nửa thế nào cũng ra.

Vậy, theo đề bài trên, đáp án đúng là:

D.\(\frac{1}{2}.\left(a+b\right).h\)

# Chúc bạn học tốt #

12 tháng 12 2018

(Các công thứ ĐÚNG nói về diện tích hình thang là :

(B) \(\left(\frac{a+b}{2}\right)\times h\)

(Diện tích của hình thang bằng chiều cao nhân với trung bình cộng của hai cạnh đáy)

(C) \(\frac{(a+b)\times h}{2}\)

(Diện tích của hình thang bằng tổng độ dài 2 cạnh đáy nhân với chiều cao rồi chia cho 2)

(D) \(\frac{1}{2}\times\left(a+b\right)\times\text{h}\)

(Diện tích của hình thang bằng đường trung bình nhân với chiều cao)

Okay !

11 tháng 5 2016

\(=\left[\frac{\left(a^{\frac{1}{2}}-b^{\frac{1}{2}}\right)\left(a+a^{\frac{1}{2}}b^{\frac{1}{2}}+b\right)}{a^{\frac{1}{2}}-b^{\frac{1}{2}}}+a^{\frac{1}{2}}b^{\frac{1}{2}}\right]\left[\frac{a^{\frac{1}{2}}-b^{\frac{1}{2}}}{\left(a^{\frac{1}{2}}-b^{\frac{1}{2}}\right)\left(a^{\frac{1}{2}}+b^{\frac{1}{2}}\right)}\right]^2\)

\(=\frac{a+2a^{\frac{1}{2}}b^{\frac{1}{2}}+b}{\left(a^{\frac{1}{2}}+b^{\frac{1}{2}}\right)^2}=\frac{\left(a^{\frac{1}{2}}+b^{\frac{1}{2}}\right)^2}{\left(a^{\frac{1}{2}}+b^{\frac{1}{2}}\right)^2}=1\)

29 tháng 6 2017

thì ra anh quý mình đây cũng lười biếng đó chứ

29 tháng 6 2017

do tao viết sai đề nên giải cả buổi ko ra