K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2015

\(\frac{x}{y}=\frac{3}{5}\Leftrightarrow5x=3y\Leftrightarrow35x=21y\)

\(7y=6z\Leftrightarrow21y=18z\)

Suy ra \(35x=18z\)

\(4x+8y-9z=-3\)

\(40x+80y-90z=-30\)

\(5x+35x+80y-90z=-30\)

\(83y-72z=-30\)

\(83y-84y=-30\left(Vì6z=7y\Leftrightarrow-72z=-84y\right)\)

\(y=30\)

\(x=18\)

\(z=35\)

10 tháng 11 2017

Ta có:

\(\dfrac{x}{y}=\dfrac{3}{5}\Rightarrow\dfrac{x}{18}=\dfrac{y}{30}\)

\(7y=6z\Rightarrow\dfrac{y}{30}=\dfrac{z}{35}\)

\(\Rightarrow\dfrac{x}{18}=\dfrac{y}{30}=\dfrac{z}{35}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\Rightarrow\dfrac{x}{18}=\dfrac{y}{30}=\dfrac{z}{35}=\dfrac{4x}{72}=\dfrac{8y}{240}=\dfrac{9z}{315}=\dfrac{4x+8y-9z}{72+240-315}=\dfrac{-3}{-3}=1\)

\(\Rightarrow\left\{{}\begin{matrix}x=18\\y=30\\z=35\end{matrix}\right.\)

Vậy...

10 tháng 11 2017

Ta có: \(\dfrac{x}{y}=\dfrac{3}{5}\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}\) (1)

\(7y=6z\Rightarrow\dfrac{y}{6}=\dfrac{z}{7}\) (2)

Từ (1) và (2) suy ra: \(\dfrac{x}{3}=\dfrac{y}{5};\dfrac{y}{6}=\dfrac{z}{7}\Leftrightarrow\dfrac{x}{18}=\dfrac{y}{30};\dfrac{y}{30}=\dfrac{z}{35}\Rightarrow\dfrac{x}{18}=\dfrac{y}{30}=\dfrac{z}{35}\)

\(\dfrac{x}{18}=\dfrac{y}{30}=\dfrac{z}{35}\)\(4x+8y-9z=-3\)

Áp dụng tính chất dãu tỉ số bằng nhau ta có:

\(\dfrac{x}{18}=\dfrac{y}{30}=\dfrac{z}{35}\Rightarrow\dfrac{4x}{72}=\dfrac{8y}{240}=\dfrac{9z}{315}=\dfrac{4x+8y-9z}{72+240-315}=\dfrac{-3}{-3}=1\)

\(\dfrac{4x}{72}=1\Rightarrow4x=72\Rightarrow x=\dfrac{72}{4}=18\)

\(\dfrac{8y}{240}=1\Rightarrow8y=240\Rightarrow y=\dfrac{240}{8}=30\)

\(\dfrac{9z}{315}=1\Rightarrow9z=315\Rightarrow z=\dfrac{315}{9}=35\)

Vậy x=18 ; y=30 ; z=35

3 tháng 11 2015

Ta có: \(\frac{x}{3}=\frac{y}{5};\frac{y}{6}=\frac{z}{7}\Rightarrow\frac{x}{18}=\frac{y}{30}=\frac{z}{35}=\frac{4x}{72}=\frac{8y}{240}=\frac{9z}{315}=\frac{-3}{-3}=1\)

\(\Rightarrow\frac{x}{18}=1\Rightarrow x=18;\frac{y}{30}=1\Rightarrow y=30;\frac{z}{35}=1\Rightarrow z=35\) 

25 tháng 7 2017

a) \(\frac{2x}{3}=\frac{3y}{4}\Leftrightarrow8x=9y\Rightarrow x=\frac{9y}{8}\left(1\right)\)

     \(\frac{3y}{4}=\frac{4z}{5}\Leftrightarrow15y=16z\Rightarrow z=\frac{15y}{16}\left(2\right)\)

THay (1) và (2) vào biểu thức \(x+y+z=41\);ta được : \(\frac{9y}{8}+y+\frac{15y}{16}=41\)

\(\Rightarrow18y+16y+15y=656\Rightarrow y=\frac{656}{49}\)

Do đó : \(x=\frac{\frac{9.656}{49}}{8}=\frac{738}{49}\)

             \(z=\frac{\frac{15.656}{49}}{16}=\frac{615}{49}\)

KL : \(x=\frac{738}{49};y=\frac{656}{49};z=\frac{615}{49}\)

25 tháng 7 2017

b) Ta có : \(4x=3y\Rightarrow x=\frac{3y}{4}\)(1)  

                \(5y=6z\Rightarrow z=\frac{5y}{6}\)(2)

Thay (1) và (2) vào biểu thức \(x^2+y^2+z^2=500\);ta được :

\(\left(\frac{3y}{4}\right)^2+y^2+\left(\frac{5y}{6}\right)^2=500\)

\(\Rightarrow\frac{9y^2}{16}+y^2+\frac{25y^2}{36}=500\Rightarrow324y^2+576y^2+400y^2=288000\)

\(\Rightarrow1300y^2=288000\Rightarrow y^2=\frac{2880}{13}\Rightarrow\orbr{\begin{cases}y=\frac{24\sqrt{65}}{13}\\y=-\frac{24\sqrt{65}}{13}\end{cases}}\)

Với \(y=\frac{24\sqrt{65}}{13}\Rightarrow x=\frac{3\cdot\frac{24\sqrt{65}}{13}}{4}=\frac{18\sqrt{65}}{13};z=\frac{5\cdot\frac{24\sqrt{65}}{13}}{6}\)

     \(y=-\frac{24\sqrt{65}}{13}\Rightarrow x=-\frac{18\sqrt{65}}{13};z=\frac{5\cdot-\frac{24\sqrt{65}}{13}}{6}\)

10 tháng 9 2019

Tìm x;y;z biết 

a) \(5x=8y=3z\text{ và }x-2y+z=34\)

Giải

Từ \(5x=8y=3z\)

\(\Rightarrow\hept{\begin{cases}5x=8y\\8y=3z\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{8}=\frac{y}{5}\\\frac{y}{3}=\frac{z}{8}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{24}=\frac{y}{15}\\\frac{y}{15}=\frac{z}{40}\end{cases}\Rightarrow}\frac{x}{24}=\frac{y}{15}=\frac{z}{40}\Rightarrow\frac{x}{24}=\frac{2y}{30}=\frac{z}{40}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{24}=\frac{y}{15}=\frac{z}{40}=\frac{x}{24}=\frac{2y}{30}=\frac{z}{40}=\frac{x-2y+z}{24-30+40}=\frac{34}{34}=1\)

\(\Rightarrow x=24.1=24;\)

\(y=15.1=15;\)

\(z=40.1=40\)

Vậy x = 24; y = 15 ; z = 40

b) \(15x=10y=6z\text{ và }xyz=-1920\left(1\right)\)

Giải

Từ \(15x=10y=6z\)

\(\Rightarrow\hept{\begin{cases}15x=10y\\10y=6z\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{y}{15}\\\frac{y}{6}=\frac{z}{10}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{20}=\frac{y}{30}\\\frac{y}{30}=\frac{z}{50}\end{cases}}\Rightarrow\frac{x}{20}=\frac{y}{30}=\frac{z}{50}}\)

Đặt \(\frac{x}{20}=\frac{y}{30}=\frac{z}{50}=k\)

\(\Rightarrow x=20k;y=30k;z=50k\left(2\right)\)

Thay (2) vào (1) ta có : 

\(\)\(20k.30k.50k=-1920\)

\(\Rightarrow k^3.30000=-1920\)

\(\Rightarrow k^3=-\frac{1920}{30000}\)

\(\Rightarrow k^3=-\frac{64}{1000}\)

\(\Rightarrow k^3=-\frac{4^3}{10^3}\)

\(\Rightarrow k^3=\left(-\frac{4}{10}\right)^3\)

\(\Rightarrow k=-\frac{4}{10}\)

Khi đó : \(x=-\frac{4}{10}.20=-8;\)

\(y=-\frac{4}{10}.30=-12;\)

\(z=-\frac{4}{10}.5=-20\)

Vậy x = - 8 ; y = - 12 ; z = - 20

c) \(x^3 +y^3+z^3=792\left(1\right)\text{ và }\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)

Giải

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)

\(\Rightarrow x=2k;y=3k;z=4k\left(2\right)\)

Thay (2) vào (1) ta có :

\(\left(2k\right)^3+\left(3k\right)^3+\left(4k\right)^3=792\)

\(\Rightarrow k^3.2^3+k^3.3^3+k^3.4^3=792\)

\(\Rightarrow k^3.8+k^3.27+k^3.64=792\)

\(\Rightarrow k^3.\left(8+27+64\right)=792\)

\(\Rightarrow k^3.99=792\)

\(\Rightarrow k^3=8\)

\(\Rightarrow k^3=2^3\)

\(\Rightarrow k=2\)

Khi đó \(x=2.2=4;\)

\(y=3.2=6;\)

\(z=4.2=8\)

Vậy x = 4 ; y = 6 ; z = 8

a) Đặt \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)

\(\Leftrightarrow\hept{\begin{cases}x=3k\\y=4k\\z=5k\end{cases}}\)

Khi đó : \(\left(3k\right)^2+2.\left(4k\right)^2+4.\left(5k\right)^2=141\)

\(\Leftrightarrow141k^2=141\)

\(\Leftrightarrow k^2=1\)

\(\Leftrightarrow k=\pm1\)

TH1 \(\hept{\begin{cases}x=3\\y=4\\z=5\end{cases}}\)

TH2 \(\hept{\begin{cases}x=-3\\y=-4\\z=-5\end{cases}}\)

Vậy.....

9 tháng 1 2020

a)

Theo đề bài ta có: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và \(x^2+2y^2+4z^2=141\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x^2}{3^2}=\frac{2y^2}{2.4^2}=\frac{4z^2}{4.5^2}=\frac{x^2+2y^2+4z^2}{9+32+100}=\frac{141}{141}=1\)

\(\frac{x}{3}=1\Rightarrow x=3.1=3\)

\(\frac{y}{4}=1\Rightarrow y=4.1=4\)

\(\frac{z}{5}=1\Rightarrow z=5.1=5\)

Vậy x = 3

y=4

z=5

28 tháng 9 2018

a) 5y = 72

=> y = 72/5

2x = 3y

<=> 2x = 3 . 72/5

<=> 2x = 216 / 5

<=> x =108/5

3x - 7y + 5z = -30

<=> 3 . 108/5 - 7. 72/5 + 5z = - 30

<=> 324/5 - 504/5 +5z = -30

<=> 5z = 6

<=> x = 6/5 

28 tháng 9 2018

câu a đoạn cuối z = 6/5 nha 

b) x : y : z = 5 : 3 :4 

\(\Leftrightarrow\frac{x}{5}=\frac{y}{3}=\frac{z}{4}\Leftrightarrow\frac{x}{5}=\frac{2y}{6}=\frac{z}{4}\)

Áp dụng t/c dãy tỉ số = nhau , ta có 

\(\frac{x}{5}=\frac{2y}{6}=\frac{z}{4}=\frac{x+2y-z}{5+6-4}=\frac{-121}{7}\)

=> x =-605/ 7

=> y = -363 / 7

=> z = -484 / 7