Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{y}=\frac{3}{5}\Leftrightarrow5x=3y\Leftrightarrow35x=21y\)
\(7y=6z\Leftrightarrow21y=18z\)
Suy ra \(35x=18z\)
\(4x+8y-9z=-3\)
\(40x+80y-90z=-30\)
\(5x+35x+80y-90z=-30\)
\(83y-72z=-30\)
\(83y-84y=-30\left(Vì6z=7y\Leftrightarrow-72z=-84y\right)\)
\(y=30\)
\(x=18\)
\(z=35\)
a)\(\dfrac{x}{8}=\dfrac{y}{5}=\dfrac{z}{12}\Leftrightarrow\dfrac{-x}{-8}=\dfrac{y}{5}=\dfrac{z}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{-x}{-8}=\dfrac{y}{5}=\dfrac{z}{12}=\dfrac{-x+y+z}{-8+5+12}=\dfrac{60}{9}=\dfrac{20}{3}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{20}{3}.8=\dfrac{160}{3}\\y=\dfrac{20}{3}.5=\dfrac{100}{3}\\z=\dfrac{20}{3}.12=80\end{matrix}\right.\)
b) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\Leftrightarrow\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{12}=\dfrac{x+2y-3z}{2+6-12}=\dfrac{-20}{-4}=5\)
\(\Rightarrow\left\{{}\begin{matrix}x=5.2=10\\y=5.3=15\\z=5.4=20\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}4x=3y\\7y=5z\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{4}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=\dfrac{y}{20}\\\dfrac{y}{20}=\dfrac{z}{28}\end{matrix}\right.\) \(\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{x-y+z}{15-20+28}=\dfrac{-46}{23}=-2\)
\(\Rightarrow\left\{{}\begin{matrix}x=-2.15=-30\\y=-2.20=-40\\z=-2.28=-56\end{matrix}\right.\)
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{5x-1}{3}=\dfrac{7y-6}{5}=\dfrac{5x+7y-7}{8}=\dfrac{5x+7y-7}{4x}\)
+) Xét \(5x+7y-7=0\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{5x-1}{3}=0\\\dfrac{7y-6}{5}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}5x-1=0\\7y-6=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=\dfrac{6}{7}\end{matrix}\right.\)
+) Xét \(5x+7y-7\ne0\)
\(\Rightarrow4x=8\Rightarrow x=2\)
Thay \(x=2\) vào \(\dfrac{5x-1}{3}=\dfrac{7y-6}{5}\)
\(\Rightarrow3=\dfrac{7y-6}{5}\)
\(\Rightarrow7y=21\Rightarrow y=3\)
Vậy nếu \(5x+7y-7=0\) thì \(x=\dfrac{1}{5};y=\dfrac{6}{7}\)
nếu \(5x+7y-7\ne0\) thì x = 2, y = 3
a) Ta có: \(6x=4y=3z\Rightarrow\dfrac{6x}{12}=\dfrac{4y}{12}=\dfrac{3z}{12}\Rightarrow\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{12}=\dfrac{x+2y-3z}{2+6-12}=\dfrac{-2}{-4}=\dfrac{1}{2}.\)
Với: \(\dfrac{x}{2}=\dfrac{1}{2}\Rightarrow x=1.\)
\(\dfrac{2y}{6}=\dfrac{y}{3}=\dfrac{1}{2}\Rightarrow y=\dfrac{1}{2}.3=\dfrac{3}{2}.\)
\(\dfrac{3z}{12}=\dfrac{z}{4}=\dfrac{1}{2}\Rightarrow z=\dfrac{1}{2}.4=\dfrac{4}{2}=2.\)
Vậy: \(x=1;y=\dfrac{3}{2};z=2.\)
Ta có: \(\frac{x}{3}=\frac{y}{5};\frac{y}{6}=\frac{z}{7}\Rightarrow\frac{x}{18}=\frac{y}{30}=\frac{z}{35}=\frac{4x}{72}=\frac{8y}{240}=\frac{9z}{315}=\frac{-3}{-3}=1\)
\(\Rightarrow\frac{x}{18}=1\Rightarrow x=18;\frac{y}{30}=1\Rightarrow y=30;\frac{z}{35}=1\Rightarrow z=35\)
a,3x=2y;7y=5z
=>\(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{7}\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta co:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x-y+z}{10-15+21}=\dfrac{32}{16}=2\\ \Rightarrow x=2.10=20\\ y=2.15=30\\ z=2.21=42\)
Các câu sau tương tự
b,\(\dfrac{x}{3}\)=\(\dfrac{y}{4}\),\(\dfrac{y}{3}\)=\(\dfrac{z}{5}\) và 2x-3y+z=6
Từ đề bài ta có:
\(\dfrac{x}{3}\)=\(\dfrac{y}{4}\)\(\Rightarrow\)\(\dfrac{x}{9}\)=\(\dfrac{y}{12}\)(1)
\(\dfrac{y}{3}\)=\(\dfrac{z}{5}\)\(\Rightarrow\)\(\dfrac{y}{12}\)=\(\dfrac{z}{20}\)(2)
từ (1) và (2)\(\Rightarrow\)\(\dfrac{x}{9}\)=\(\dfrac{y}{12}\)=\(\dfrac{z}{20}\)\(\Rightarrow\)\(\dfrac{2x}{18}\)=\(\dfrac{3y}{36}\)=\(\dfrac{z}{20}\)
Áp dụng t/c dãy tỉ số bằng nhau,ta có:
\(\dfrac{2x}{18}\)=\(\dfrac{3y}{36}\)=\(\dfrac{z}{20}\)=\(\dfrac{2x-3y+z}{18-36+20}\)=\(\dfrac{6}{2}\)=3
\(\Rightarrow\)x=3.9=27
y=3.12=36
z=3.20=60
Vậy.....
chúc bạn học tốt,nhớ tick cho mình nha
b: \(ab\cdot bc\cdot ac=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}=\dfrac{1}{4}\)
\(\Leftrightarrow\left(abc\right)^2=\dfrac{1}{4}\)
Trường hợp 1: abc=1/2
\(\Leftrightarrow\left\{{}\begin{matrix}c=\dfrac{1}{2}:\dfrac{1}{2}=1\\a=\dfrac{1}{2}:\dfrac{2}{3}=\dfrac{3}{4}\\b=\dfrac{1}{2}:\dfrac{3}{4}=\dfrac{1}{2}\cdot\dfrac{4}{3}=\dfrac{2}{3}\end{matrix}\right.\)
Trường hợp 2: abc=-1/2
\(\Leftrightarrow\left\{{}\begin{matrix}c=-1\\a=-\dfrac{3}{4}\\b=-\dfrac{2}{3}\end{matrix}\right.\)
c: Theo đề, ta có: \(\left\{{}\begin{matrix}\dfrac{x-1}{2}=\dfrac{y-2}{1}\\\dfrac{y-2}{3}=\dfrac{z-3}{4}\end{matrix}\right.\Leftrightarrow\dfrac{x-1}{6}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{6}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{2\cdot6-3\cdot6+3\cdot4}=\dfrac{45}{6}=\dfrac{15}{2}\)
Do đó: x-1=45; y-2=45/2; z-3=30
=>x=46; y=49/2; z=33
Ta có:
\(\dfrac{x}{y}=\dfrac{3}{5}\Rightarrow\dfrac{x}{18}=\dfrac{y}{30}\)
\(7y=6z\Rightarrow\dfrac{y}{30}=\dfrac{z}{35}\)
\(\Rightarrow\dfrac{x}{18}=\dfrac{y}{30}=\dfrac{z}{35}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\Rightarrow\dfrac{x}{18}=\dfrac{y}{30}=\dfrac{z}{35}=\dfrac{4x}{72}=\dfrac{8y}{240}=\dfrac{9z}{315}=\dfrac{4x+8y-9z}{72+240-315}=\dfrac{-3}{-3}=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=18\\y=30\\z=35\end{matrix}\right.\)
Vậy...
Ta có: \(\dfrac{x}{y}=\dfrac{3}{5}\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}\) (1)
\(7y=6z\Rightarrow\dfrac{y}{6}=\dfrac{z}{7}\) (2)
Từ (1) và (2) suy ra: \(\dfrac{x}{3}=\dfrac{y}{5};\dfrac{y}{6}=\dfrac{z}{7}\Leftrightarrow\dfrac{x}{18}=\dfrac{y}{30};\dfrac{y}{30}=\dfrac{z}{35}\Rightarrow\dfrac{x}{18}=\dfrac{y}{30}=\dfrac{z}{35}\)
Có \(\dfrac{x}{18}=\dfrac{y}{30}=\dfrac{z}{35}\)và \(4x+8y-9z=-3\)
Áp dụng tính chất dãu tỉ số bằng nhau ta có:
\(\dfrac{x}{18}=\dfrac{y}{30}=\dfrac{z}{35}\Rightarrow\dfrac{4x}{72}=\dfrac{8y}{240}=\dfrac{9z}{315}=\dfrac{4x+8y-9z}{72+240-315}=\dfrac{-3}{-3}=1\)
\(\dfrac{4x}{72}=1\Rightarrow4x=72\Rightarrow x=\dfrac{72}{4}=18\)
\(\dfrac{8y}{240}=1\Rightarrow8y=240\Rightarrow y=\dfrac{240}{8}=30\)
\(\dfrac{9z}{315}=1\Rightarrow9z=315\Rightarrow z=\dfrac{315}{9}=35\)
Vậy x=18 ; y=30 ; z=35