K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2018

2). Từ AD là phân giác  B A C ^  suy ra DB=DC vậy DE vuông góc với BC tại trung điểm N của BC.

Từ 1). Δ B D M ∽ Δ B C F , ta có  D M C F = B D B C .

Vậy ta có biến đổi sau D A C F = 2 D M C F = 2 B D B C = C D C N = D E C E  (3).

 

Ta lại có góc nội tiếp  A D E ^ = F C E ^  (4).

Từ 3 và 4, suy ra Δ E A D ∽ Δ E F C ⇒ E F C ^ = E A D ^ = 90 ° ⇒ E F ⊥ A C  

10 tháng 8 2017

b)    CD đi qua trung điểm của đường cao AH của D ABC

· Gọi F là giao của BD CA.

Ta có BD.BE= BA.BM (cmt)

= > B D B A = B M B E = > Δ B D M ~ Δ B A E ( c − g − c ) = > B M D = B E A

Mà BCF=BEA(cùng chắn AB)

=>BMD=BCF=>MD//CF=>D là trung điểm BF

· Gọi T là giao điểm của CD AH .

DBCD TH //BD  = > T H B D = C T C D  (HQ định lí Te-let) (3)

DFCD TA //FD  = > T A F D = C T C D  (HQ định lí Te-let) (4)

BD= FD (D là trung điểm BF ) (5)

· Từ (3), (4) và (5) suy ra TA =TH ÞT là trung điểm AH .

Gọi L' là giao của AD với BK

=>BL'//AC

=>BL;/AC=DB/DC

BL=BL'

BL=BK

=>BK=BL'

=>BK/AC=BK'/AC=DB/DC

mà BK/AC=SB/SC

nên cần chứng minh SB/SC=DB/DC

DB/DC*FC/FA*EA/EB=1

SB/SC*FC/FA*EA/EB=1

=>DB/DC=SB/SC

=>A,D,L thẳng hàng

a: góc CDM=góc CEM=90 độ

=>CDEM nội tiếp

b: Xet ΔMEA vuông tại E và ΔMDB vuông tại D có

góc EMA chung

=>ΔMEA đồng dạng với ΔMDB

=>ME/MD=MA/MB

=>ME*MB=MA*MD

20 tháng 3 2023

a. góc CDM=góc CEM=90 độ

=>CDEM nội tiếp

b. Xet ΔMEA vuông tại E và ΔMDB vuông tại D có

góc EMA chung

=>ΔMEA đồng dạng với ΔMDB

=>ME/MD=MA/MB

=>ME*MB=MA*MD

9 tháng 9 2018

1). Ta có góc nội tiếp bằng nhau  B D M ^ = B C F ^   ( 1 ) và  B M A ^ = B F A ^    suy ra  180 0 − B M A ^ = 180 0 − B F A ^  hay  B M D ^ = B F C ^  (2).

Từ (1) và (2), suy ra  Δ B D M ~ Δ B C F   (g - g).

2 tháng 6 2018

a)    Chứng minh BA . BC = 2BD . BE

· Ta có: DBA+ ABC = 900 , EBM +ABC = 900

Þ DBA =EBM (1)

· Ta có: DONA = DOME (c-g-c)

Þ EAN= MEO

Ta lại có: DAB +BAE+ EAN  = 900, và BEM +BAE +MEO  = 900

Þ DAB= BEM (2)

· Từ (1) và (2) suy ra DBDA đồng dạng DBME (g-g)

= > B D B M = B A B E = > D B . B E = B A . B M = B A . B C 2 = > 2 B D . B E = B A . B C