K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2019

a) Thay m=2:

\(\left(P\right):y=2x^2;\left(d\right):y=5x-3\)

PTHĐGĐ của (P) và (d):

\(2x^2=5x-3\)

\(\Leftrightarrow2x^2-5x+3=0\)

\(\Rightarrow\left\{{}\begin{matrix}x=1\\x=\frac{3}{2}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}y=2\\y=\frac{9}{2}\end{matrix}\right.\)

Vậy (P) cắt (d) tại \(\left(1;2\right);\left(\frac{3}{2};\frac{9}{2}\right)\)

b)(P) cắt (d) tại 2 đ pb thì pt \(mx^2-\left(3m-1\right)x+2m-1=0\)có \(\Delta=\left(3m-1\right)^2-4m\left(2m-1\right)>0\)

\(=9m^2-6m+1-8m^2+4m>0\)

\(=\left(m-1\right)^2>0\Rightarrow m\ne1\)

Gọi \(A\left(x_1;y_1\right);B\left(x_2;y_2\right)\) là 2 điểm giao.

Vì (P) và (d) cắt nhau tại hai điểm phân biệt nằm cùng phía đối với trục tung nên \(x_1x_2>0\)

Theo hệ thức Viet: \(x_1+x_2=\frac{3m-1}{m};x_1x_2=\frac{2m-1}{m}\)

\(\frac{2m-1}{m}>0\Rightarrow m>1\) Vậy m>1 TM.

NV
15 tháng 5 2020

Khi \(m=5\) pt (d) có dạng: \(y=-5x-2\)

Phương trình hoành độ giao điểm (d) và (P):

\(2x^2=-5x-2\Leftrightarrow2x^2+5x+2=0\Rightarrow\left[{}\begin{matrix}x=-\frac{1}{2}\\x=-2\end{matrix}\right.\)

Với \(x=-\frac{1}{2}\Rightarrow y=2x^2=\frac{1}{2}\)

Với \(x=-2\Rightarrow y=2x^2=8\)

Vậy có 2 giao điểm: \(\left(-\frac{1}{2};\frac{1}{2}\right)\)\(\left(-2;8\right)\)

NV
22 tháng 7 2020

4.

Để phép tịnh tiến theo \(\overrightarrow{v}\) biến d thành chính nó thì \(\overrightarrow{v}\) phải là 1 vecto chỉ phương của d

Khi đó \(\overrightarrow{v}=k\left(1;2\right)\) với k là số thực

5.

Đường tròn tâm \(I\left(2;1\right)\) bán kính \(R=4\)

Phép tịnh tiến theo \(\overrightarrow{v}\) biến đường tròn thành đường tròn tâm I' bán kính R=4

\(I'=T_{\overrightarrow{v}}\left(I\right)\Rightarrow\left\{{}\begin{matrix}x_{I'}=2+1=3\\y_{I'}=3+1=4\end{matrix}\right.\) \(\Rightarrow I'\left(3;4\right)\)

Phương trình đường tròn: \(\left(x-3\right)^2+\left(y-4\right)^2=16\)

b: Phương trình hoành độ giao điểm là:

\(\dfrac{3}{2}x^2-mx-4=0\)

\(\Leftrightarrow3x^2-2mx-8=0\)

ac<0 nên (P) luôn cắt (d) tại hai điểm phân biệt

Theo đề, ta có: \(\left(x_1+x_2\right)^2-3x_1x_2=24\)

\(\Leftrightarrow m^2\cdot\dfrac{4}{9}-3\cdot\dfrac{-8}{3}=24\)

\(\Leftrightarrow m^2\cdot\dfrac{4}{9}=16\)

hay m=6 hoặc m=-6

11 tháng 5 2022

giúp mình cả câu a được k bạn ._.

24 tháng 4 2023

\(PT\left(T\right)\) có dạng \(x^2+y^2-2ax-2by+c=0\)

\(\left\{{}\begin{matrix}A\left(-1;2\right)\in\left(T\right)\\B\left(1;2\right)\in\left(T\right)\\C\left(2;-3\right)\in\left(T\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(-1\right)^2+2^2+2a-4b+c=0\\1^2+2^2-2a-4b+c=0\\2^2+\left(-3\right)^2-4a+6b+c=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2a-4b+c=-5\\-2a-4b+c=-5\\-4a+6b+c=-13\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=-\dfrac{4}{5}\\c=-\dfrac{41}{5}\end{matrix}\right.\)

\(\Rightarrow\)Tâm \(I\left(0;-\dfrac{4}{5}\right)\)

NV
27 tháng 4 2020

Câu 1:

Do \(\Delta\) song song d nên nhận \(\left(2;-1\right)\) là 1 vtpt

Phương trình \(\Delta\) có dạng: \(2x-y+c=0\) (\(c\ne2015\))

Tọa độ giao điểm của \(\Delta\) và Ox: \(\left\{{}\begin{matrix}y=0\\2x-y+c=0\end{matrix}\right.\) \(\Rightarrow M\left(-\frac{c}{2};0\right)\)

Tọa độ giao điểm \(\Delta\) và Oy: \(\left\{{}\begin{matrix}x=0\\2x-y+c=0\end{matrix}\right.\) \(\Rightarrow N\left(0;c\right)\)

\(\overrightarrow{MN}=\left(\frac{c}{2};c\right)\Rightarrow\frac{c^2}{4}+c^2=45\Leftrightarrow c^2=36\Rightarrow\left[{}\begin{matrix}c=6\\c=-6\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}2x-y+6=0\\2x-y-6=0\end{matrix}\right.\)

Bài 2:

Bạn tham khảo ở đây:

Câu hỏi của tôn hiểu phương - Toán lớp 10 | Học trực tuyến