Bài tập: Tìm x thuộc Z
\(\frac{x+1}{x-2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vào thống kê xem link nhé:
Câu hỏi của Kim Trân Ni - Toán lớp 8 - Học toán với OnlineMath
a) bài 1
để \(x\in Z\)thì \(3x-1⋮x-1\)
mà \(x-1⋮x-1\)
\(\Rightarrow3\left(x-1\right)⋮x-1\)
\(\Rightarrow\left(3x-1\right)-\left[3x-3\right]⋮x-1\)
\(\Rightarrow2⋮x-1\)
\(\Rightarrow x-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
ta có bảng
x-1 | 1 | -1 | 2 | -2 |
x | 2 | 0 | 3 | -1 |
vậy \(x\in\left\{2;0;3;-1\right\}\)
\(\frac{2}{x+1}=\frac{8}{x-2}\)
\(\Rightarrow2\left(x-2\right)=8\left(x+1\right)\)
\(\Rightarrow2x-4=8x+8\)
\(\Rightarrow2x-8x=8+4\)
\(\Rightarrow-6x=12\)
\(\Rightarrow x=12:\left(-6\right)\)
\(\Rightarrow x=-2\)
a, Với \(x\ge0;x\ne1\)
\(B=\frac{1}{\sqrt{x}-1}=2\Rightarrow2\sqrt{x}-2=1\Leftrightarrow2\sqrt{x}-3=0\Leftrightarrow x=\frac{9}{4}\)
b, Ta có : \(A.B=\frac{x+3}{\sqrt{x}+1}.\frac{1}{\sqrt{x}-1}=\frac{x+3}{x-1}=\frac{x-1+4}{x-1}=1+\frac{4}{x-1}\)
\(\Rightarrow x-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
x - 1 | 1 | -1 | 2 | -2 | 4 | -4 |
x | 2 | 0 | 3 | -1 | 5 | -3 |
c, Ta có : \(A=\frac{x+3}{\sqrt{x}+1}\le3\Leftrightarrow\frac{x+3}{\sqrt{x}+1}-3\le0\)
\(\Leftrightarrow\frac{x-3\sqrt{x}}{\sqrt{x}+1}\le0\Rightarrow\sqrt{x}-3\le0\Leftrightarrow x\le9\)
Kết hợp với đk vậy 0 =< x =< 9
Bài 1
***\(y=-x\)
Cho \(x=0\Rightarrow y=0\)
\(x=-1\Rightarrow y=1\)
Đồ thị hàm số \(y=-x\)là đường thẳng đi qua hai điểm \(\left(0,0\right);\left(-1;1\right)\)
*** \(y=\frac{1}{2}x\)
Cho \(x=0\Rightarrow y=0\)
\(x=2\Rightarrow y=1\)
Đồ thị hàm số \(y=\frac{1}{2}x\)là đường thẳng đi qua 2 điểm \(\left(0;0\right)\left(2;1\right)\)
*** \(y=2x+1\)
Cho \(x=0\Rightarrow y=1\)
\(y=-1\Rightarrow x=-1\)
Đồ thị hàm số \(y=2x+1\)là đường thẳng đi qua 2 điểm \(\left(0;1\right)\left(-1;-1\right)\)
Bài 2
a, \(P=\frac{\sqrt{x}}{\sqrt{x}-4}-\frac{4}{\sqrt{x}+4}-\frac{8\sqrt{x}}{x-16}\)
\(=\frac{\sqrt{x}}{\sqrt{x}-4}-\frac{4}{\sqrt{x}+4}-\frac{8\sqrt{x}}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+4\right)-4\left(\sqrt{x}-4\right)-8\sqrt{x}}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{x+4\sqrt{x}-4\sqrt{x}+16-8\sqrt{x}}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{x-8\sqrt{x}+16}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{x-4\sqrt{x}-4\sqrt{x}+16}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-4\right)-4\left(\sqrt{x}-4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{\left(\sqrt{x}-4\right)\left(\sqrt{x}-4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{\sqrt{x}-4}{\sqrt{x}+4}\)
b, Với x = 25
\(\Rightarrow P=\frac{\sqrt{25}-4}{\sqrt{25}+4}=\frac{5-4}{5+4}=\frac{1}{9}\)
c, \(P=\frac{\sqrt{x}-4}{\sqrt{x}+4}=1-\frac{8}{\sqrt{x}+4}\)
Để P thuộc Z thì \(\sqrt{x}+4\inƯ\left(8\right)=\left(-8;-4-2;-1;1;2;4;8\right)\)
\(\sqrt{x}+4=-8\Rightarrow\sqrt{x}=-12VN\)
\(\sqrt{x}+4=-4\Rightarrow\sqrt{x}=-8VN\)
\(\sqrt{x}+4=-2\Rightarrow\sqrt{x}=-6VN\)
\(\sqrt{x}+4=-1\Rightarrow\sqrt{x}=-5VN\)
\(\sqrt{x}+4=1\Rightarrow\sqrt{x}=-3VN\)
\(\sqrt{x}+4=2\Rightarrow\sqrt{x}=-2VN\)
\(\sqrt{x}+4=4\Rightarrow\sqrt{x}=0\Rightarrow x=0\)
\(\sqrt{x}+4=8\Rightarrow\sqrt{x}=4\Rightarrow x=16\)
d, Để P nhỏ nhất thì \(\frac{8}{\sqrt{x}+4}\)lớn nhất
\(\frac{8}{\sqrt{x}+4}\)lớn nhất khi \(\sqrt{x}+4\)nhỏ nhất '
\(\sqrt{x}+4\)nhỏ nhất = 4 khi x = 0
vậy x=0 thì P đạt giá trị nhỉ nhất min p = -1
Ta có:
\(\frac{x+1}{x-2}=\frac{x-2+3}{x-2}=\frac{x-2}{x-2}+\frac{3}{x-2}=1+\frac{3}{x-2}\)
Để \(\left(x+1\right)⋮\left(x-2\right)\Rightarrow\left(x-2\right)\inƯ_{\left(3\right)}=\left\{\pm1;\pm3\right\}\)
Vậy \(x=\left\{-1;1;3;5\right\}\)
\(\frac{x+1}{x-2}\)
\(=\frac{x-2+3}{x-2}\)
\(=1+\frac{3}{x-2}\)
Để \(\left(x+1\right)⋮\left(x-2\right)\)thì\(\left(x-2\right)\inƯ_3=\left\{\pm1;\pm3\right\}\)
Ta có bảng sau
Vậy \(x\in\left\{\pm1;3;5\right\}\)