Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\frac{2}{3}+\frac{4}{35}< \frac{x}{105}< \frac{1}{7}+\frac{2}{5}+\frac{1}{3}\)
\(\Rightarrow\frac{82}{105}< \frac{x}{105}< \frac{92}{105}\)
\(\Rightarrow82< x< 92\)
\(\Rightarrow x=\left\{83;84;85;86;87;88;89;90;91\right\}\)
b/ \(-\frac{7}{15}+\frac{8}{60}+\frac{24}{90}\le\frac{x}{15}\le\frac{3}{5}+\frac{8}{30}+-\frac{4}{10}\)
\(\Rightarrow-\frac{1}{15}\le\frac{x}{15}\le\frac{7}{15}\)
\(\Rightarrow-1\le x\le7\)
\(\Rightarrow x=\left\{-1;0;1;2;3;4;5;6;7\right\}\)
Ta có :\(\frac{x-1}{-2}=\frac{-8}{x-1}\Rightarrow\left(x-1\right)^2=16\Rightarrow\orbr{\begin{cases}x-1=4\\x-1=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=-3\end{cases}}}\)
\(\frac{x-1}{-2}=\frac{-8}{x-1}\left(x\ne1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x-1\right)=-2\cdot\left(-8\right)\)
\(\Leftrightarrow\left(x-1\right)^2=16\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=4\\x-1=-4\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-3\end{cases}\left(tm\right)}}\)
Vậy x=5; x=-3
Ta có : \(\frac{2}{-3}< \frac{x}{5}< \frac{-1}{6}\) với x thuộc Z
=> \(-\frac{20}{30}< \frac{6x}{30}< \frac{5}{50}\)
=> \(-20< 6x< 5\)
=> 6x thuộc {-19 ; -18 ; -17 ; ...;2;3;4}
Vì x thuộc Z
=> x thuộc {-3;-2;-1;0}
Vậy B=
http://olm.vn/hỏi-đáp/question/584545.html chờ xí tui thấy cái tên rồi giải cho bài 2
\(\frac{1}{x}\)+\(\frac{y}{2}\)=\(\frac{5}{8}\)
=> \(\frac{5}{8}\)-\(\frac{y}{2}\)= \(\frac{1}{x}\)
=> \(\frac{5}{8}\)-\(\frac{4y}{8}\)=\(\frac{1}{x}\)
=>\(\frac{5-4y}{8}\)=\(\frac{1}{x}\)
=> (5-4y).x=1.8
=>(5-4y).x=8
=> 8 \(⋮\) (5-4y) , 8 \(⋮\)x
=> 5-4y \(\in\)Ư(8) , x\(\in\)Ư(8)
mà Ư(8)= { 1, -1, 2, -2, 4, -4, 8, -8 }
Ta có bảng
5-4y | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
x | 8 | -8 | 4 | -4 | 2 | -2 | 1 | -1 |
y | 1 | \(\frac{3}{2}\) | \(\frac{3}{4}\) | \(\frac{7}{2}\) | \(\frac{1}{4}\) | \(\frac{9}{4}\) | - \(\frac{3}{4}\) | \(\frac{13}{4}\) |
mà x,y \(\in\)z nên (x,y)=(8,1)
Vậy x=8, y=1
Ta có:
\(\frac{x+1}{x-2}=\frac{x-2+3}{x-2}=\frac{x-2}{x-2}+\frac{3}{x-2}=1+\frac{3}{x-2}\)
Để \(\left(x+1\right)⋮\left(x-2\right)\Rightarrow\left(x-2\right)\inƯ_{\left(3\right)}=\left\{\pm1;\pm3\right\}\)
\(x-2\) | \(-3\) | \(-1\) | \(1\) | \(3\) |
\(x\) | \(-1\) | \(1\) | \(3\) | \(5\) |
Vậy \(x=\left\{-1;1;3;5\right\}\)
\(\frac{x+1}{x-2}\)
\(=\frac{x-2+3}{x-2}\)
\(=1+\frac{3}{x-2}\)
Để \(\left(x+1\right)⋮\left(x-2\right)\)thì\(\left(x-2\right)\inƯ_3=\left\{\pm1;\pm3\right\}\)
Ta có bảng sau
\(x-2\) | \(-3\) | \(-1\) | \(1\) | \(3\) |
\(x\) | \(-1\) | \(1\) | \(3\) | \(5\) |
Vậy \(x\in\left\{\pm1;3;5\right\}\)
\(\frac{2}{x+1}=\frac{8}{x-2}\)
\(\Rightarrow2\left(x-2\right)=8\left(x+1\right)\)
\(\Rightarrow2x-4=8x+8\)
\(\Rightarrow2x-8x=8+4\)
\(\Rightarrow-6x=12\)
\(\Rightarrow x=12:\left(-6\right)\)
\(\Rightarrow x=-2\)
dễ