K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2017

hình bạn vẽ jum mik nha! Còn giờ mik giải bài 

a) Xét \(\Delta\)vuông ABH và \(\Delta\)vuông AEH có: 

AH: cạnh chung  

góc BAH= góc EAH (do AH là đường phân giác của tam giác ABC) 

Do đó: \(\Delta\)ABH=\(\Delta\)AEH (cgv-gn) 

b) Vì \(\Delta\)ABH= \(\Delta\)AEH (cmt) 

=> AB=AE (2 cạnh tương ứng) 

Xét \(\Delta\)ABM và\(\Delta\)AEM có: 

AB= AE (cmt) 

góc BAM= góc EAM ( do AM là đường phân giác của tam giác ABC) 

AM: cạnh chung  

Do đó: \(\Delta\)ABM=\(\Delta\)AEM ( c.g.c) 

=> góc ABM= góc AEM=90 độ 

=> ME vuông góc với AC 

c) Vì \(\Delta\)ABM= \(\Delta\)AEM (cmt) 

=> BM=EM=3 cm   

Ta có: \(\Delta\)MEC vuông tại E  

Theo định lí Py-ta-go , ta có: 

 MC\(^2\)= ME\(^2\)+EC\(^2\)

EC\(^2\)= MC\(^2\)- ME\(^2\)

EC\(^2\)= 5\(^2\)- 3\(^2\)=25-9=16 

EC = \(\sqrt{16}\)=4 cm 

d) Ta có : tam giác ABC vuông tại B 

=> góc C+ góc BAC = 90 độ 

    30 độ + góc BAC = 90 độ

 góc BAC= 90 độ -30 độ = 60 độ 

Xét tam giác ABE có AB=AE và góc BAC = 60 độ 

=> tam giác ABE đều 

=> góc BAE= góc ABE= góc AEB= 60 độ 

Ta có: góc BAE+ góc EBC= 90 độ 

 góc BAE + góc C =90 độ 

=> góc EBC = góc C 

=> tam giác BEC cân tại E 

23 tháng 3 2021

Cậu ghi rõ ràng hơn chút được không ạ . Cậu ghi AB AC ; BE BI mình không hiểu đc

a: Xét ΔABM vuông tại A và ΔHBM vuông tại H có

BM chung

\(\widehat{ABM}=\widehat{HBM}\)

Do đó: ΔABM=ΔHBM

Suy ra: MA=MH

b: Ta có: MA=MH

mà MH<MC

nên MA<MC

a: \(AB=\sqrt{15^2-12^2}=9\left(cm\right)\)

b: Xét ΔBAM vuông tại A và ΔBNM vuông tại N có

BM chung

góc ABM=góc NBM

=>ΔBAM=ΔBNM

=>MA=MN

c: Xét ΔBDC có

BE là đừog cao, là phân giác

nên ΔBDC cân tại B

=>BD=BC

BA+AD=BD

BN+NC=BC

mà BD=BC; BA=BN

nên AD=NC

15 tháng 6 2021

Em tham khảo nhé ~

undefined

undefined

undefined

7 tháng 12 2015

len google

 

20 tháng 3 2020

A B C M 1 2

a) Xét tam giác AMB và AMC có:

AM chung 

AB=AC (tam giác ABC cân tại A)

\(\widehat{A_1}=\widehat{A_2}\)(AM là phân giác)
=> \(\Delta AMB=\Delta AMC\left(cgc\right)\)(đpcm)

b) Có tam giác ABC cân tại A (gt); AM là trung tuyến tam giác ABC

Vì trong tam giác cân đường trung tuyến trùng với đường cao

=> AM là đường cao tam giác ABC 

=> AM _|_ BC (đpcm)

Bài làm

a) Xét tam giác AMB và tam giác AMC có:

^MAB = ^MAC ( Do AM phân giác )

AB = AC ( Do ∆ABC cân )

^B = ^C ( Do ∆ABC cân )

=> ∆AMB = ∆AMC ( g.c.g )

b) Cách 1: Vì ∆AMB = ∆AMC ( cmt )

=> ^AMB = ^AMC 

Mà ^AMB + ^AMC = 180° ( hai góc kề bù )

=> ^AMB = ^AMC = 180°/2 = 90°

=. AM vuông góc với BC.

Cách 2: Vì tam giác ABC cân tại A

Mà AM là tia phân giác

=> AM đồng thời là đường cao.

=> AM vuông góc với BC .

c) Vì ∆ABC cân tại A

Mà AM vừa là đường phân giác, vừa là đường cao.

=> AM là đường trung tuyến. 

=> BM = MC 

Mà BM + MC = BC = 6

=> BM = MC = 6/2 = 3 ( cm )

Xét tam giác AMB vuông tại M có:

Theo định lí Pytago có:

AB² = AM² + BM²

=> AM² = AB² - BM²

Hay AM² = 5² - 3²

=> AM² = 25 - 9

=> AM² = 16

=> AM = 4 ( cm )

d) Xét tam giác ABC có:

AM vuông góc với BC

AH vuông góc với AC

Mà AM cắt AH tại H

=> H là trực tâm.

=> CH vuông góc với AB . ( Đpcm )

a: Xét ΔBAK vuông tại A và ΔBHK vuông tại H có

BK chung

BA=BH

Do đó; ΔBAK=ΔBHK

Suy ra: \(\widehat{ABK}=\widehat{HBK}\)

hay BK là tia phân giác của góc ABH

b: Xét ΔBAM và ΔBHN có 

BA=BH

\(\widehat{ABM}\) chung

BM=BN

Do đó; ΔBAM=ΔBHN

Suy ra: MA=NH

Xét ΔNAH và ΔMHA có 

NA=MH

AH chung

NH=MA

Do đó; ΔNAH=ΔMHA

Suy ra: \(\widehat{GHA}=\widehat{GAH}\)

hay ΔGAH cân tại G

=>GA=GH

hay GM=GN

16 tháng 5 2016

Câu c chỉ cần kéo xuống và nói là cái điểm giao nhau là trwc tâm nên BH vuông góc OC ..... Còn ta có thể thấy là tam giác BOC là tam giác cân tại B nên AC=OM mà HA=HM nên HO=HC => đó là tam giác cân tại H

16 tháng 5 2016

Bạn tự vẽ hình nhaleu

a.

Xét tam giác ABH vuông tại A và tam giác MBH vuông tại M có:

BH là cạnh chung

HBA = HBM (BH là tia phân giác của ABM)

=> Tam giác ABH = Tam giác MBH (cạnh huyền - góc nhọn)

b.

  • AH = MH (tam giác ABH = tanm giác MBH) => H thuộc đường trung trực của AM
  • AB = MB (tam giác ABH = tam giác MBH) => B thuộc đường trung trực của AM

=> BH là đường trung trực của AM

c.

  • CA là đường cao của tam giác BOC
  • OM là đường cao của tam giác BOC

=> H là trực tâm của tam giác BOC.

=> BH là đường cao của tam giác BOC

hay BH _I_ OC

Xét tam giác AHO và tam giác MHC có:

OHA = CHM (2 góc đối đỉnh)

AH = MH (tam giác ABH = tam giác MBH)

OAH = CMH ( = 90 )

=> Tam giác AHO = Tam giác MHC (g.c.g)

BO = BA + AO

BC = BM + MC

mà BA = BM (tam giác ABH = tam giác MBH)

      AO = MC (tam giác AHO = tam giác MHC)

=> BO = BC

=> Tam giác BOC cân tại B

Chúc bạn học tốtok