4 mũ n+2 + 4 mũ n+3 + 4 mũ n+4 + 4 mũ n+5 = 85 x (2 mũ 2019 : 2 mũ 2015)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3.
a) \(\left(x-1\right)^3=125\)
=> \(\left(x-1\right)^3=5^3\)
=> \(x-1=5\)
=> \(x=5+1\)
=> \(x=6\)
Vậy \(x=6.\)
b) \(2^{x+2}-2^x=96\)
=> \(2^x.\left(2^2-1\right)=96\)
=> \(2^x.3=96\)
=> \(2^x=96:3\)
=> \(2^x=32\)
=> \(2^x=2^5\)
=> \(x=5\)
Vậy \(x=5.\)
c) \(\left(2x+1\right)^3=343\)
=> \(\left(2x+1\right)^3=7^3\)
=> \(2x+1=7\)
=> \(2x=7-1\)
=> \(2x=6\)
=> \(x=6:2\)
=> \(x=3\)
Vậy \(x=3.\)
Chúc bạn học tốt!
a) \(4^n=4096\Rightarrow4^n=4^6\Rightarrow n=6\)
b) \(5^n=15625\Rightarrow5^n=5^6\Rightarrow n=6\)
c) \(6^{n+3}=216\Rightarrow6^{n+3}=6^3\Rightarrow n+3=3\Rightarrow n=0\)
d) \(x^2=x^3\Rightarrow x^3-x^2=0\Rightarrow x^2\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
e) \(3^{x-1}=27\Rightarrow3^{x-1}=3^3\Rightarrow x-1=3\Rightarrow x=4\)
f) \(3^{x+1}=9\Rightarrow3^{x+1}=3^2\Rightarrow x+1=2\Rightarrow x=1\)
g) \(6^{x+1}=36\Rightarrow6^{x+1}=6^2\Rightarrow x+1=2\Rightarrow x=1\)
h) \(3^{2x+1}=27\Rightarrow3^{2x+1}=3^3\Rightarrow2x+1=3\Rightarrow2x=2\Rightarrow x=1\)
i) \(x^{50}=x\Rightarrow x^{50}-x=0\Rightarrow x\left(x^{49}-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^{49}-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x^{49}=1=1^{49}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
4n = 4096
4n = 212
n = 12
5n = 15625
5n = 56
n = 6
6n+3 = 216
6n+3 = 23.33
6n+3 = 63
n + 3 = 3
32 . 3n = 35
=> 2 + n = 5
=> n = 5 - 2
=> n = 3
( 22 : 4 ) . 2n = 4
( 4 : 4 ) . 2n = 22
1 . 2n = 22
=> n = 2
Các câu sau tự làm nhé
Bài 1.
a) \(12^3.3^3=\left(12.3\right)^3=36^3.\)
b) \(2^5.8^4=2^5.\left(2^3\right)^4=2^5.2^{12}=2^{17}.\)
c) \(3^8.9^0.27^2=3^8.1.\left(3^3\right)^2=3^8.3^6=3^{14}.\)
d) \(2^4.5^4=\left(2.5\right)^4=10^4.\)
e) \(2^4.4^3=2^4.\left(2^2\right)^3=2^4.2^6=2^{10}.\)
Bài 2.
a) \(5^x=259\)
Vì 5 khi nâng lên luỹ thừa bậc mấy thì chữ số tận cùng của kết quả luôn bằng 5.
Mà 259 có tận cùng là 9
\(\Rightarrow5^x=259\) (vô lý)
\(\Rightarrow\) Phương trình vô nghiệm.
b) \(\left(7x-11\right)^3=2^5.5^2+260\)
\(\Leftrightarrow\left(7x-11\right)^3=800+260\)
\(\Leftrightarrow\left(7x-11\right)^3=1060\)
\(\Leftrightarrow7x-11=\sqrt[3]{1060}\)
\(\Leftrightarrow7x=\sqrt[3]{1060}+11\)
\(\Leftrightarrow x=\dfrac{\sqrt[3]{1060}+11}{7}\).
+) 37 x ( 3 + 7 ) = 3^3 + 3^7
- 37 x ( 3 + 7 ) = 370
- 3^3 + 3^7 = 27 + 2187 = 2214
Từ đó, suy ra => SAI
+) 59 x ( 5 + 9 ) = 5^3 + 9^3
- 59 x ( 5 + 9 ) = 826
- 5^3 + 9^3 = 125 + 729 = 854
Từ đó, suy ra => SAI
\(4^{n+2}+4^{n+3}+4^{n+4}+4^{n+5}=85.\left(2^{2019}\div2^{2015}\right)\)
\(\Leftrightarrow4^{n+2}\left(1+4^1+4^2+4^3\right)=85.2^{2019-2015}\)
\(\Leftrightarrow4^{n+2}.85=85.2^4\)
\(\Leftrightarrow4^{n+2}=2^4=4^2\)
\(\Leftrightarrow n+2=2\)
\(\Leftrightarrow n=0\)