Tìm nghiệm của đa thức sau :
4x2 – 25
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta thấy $D(x)=4x^2-3x+7=3x^2+(x^2-3x+1,5^2)+4,75=3x^2+(x-1,5)^2+4,75\geq 4,75>0$ với mọi $x$
$\Rightarrow D(x)$ vô nghiệm
Ta có f(x) + g(x) = 4x-2.
Cho 4x - 2 = 0 ⇒ 4x = 2 ⇒ x = 1/2. Chọn A
Cho `H(x)=0`
`=>4x^2-64=0`
`=>(2x-8)(2x+8)=0`
`@TH1:2x-8=0=>2x=8=>x=4`
`@TH2:2x+8=0=>2x=-8=>x=-4`
Vậy nghiệm của `H(x)` là `x=4` hoặc `x=-4`
______________________________________________
Cho `K(x)=0`
`=>(2x+8)^2=0`
`=>2x+8=0`
`=>2x=-8`
`=>x=-4`
Vậy nghiệm của `K(x)` là `x=-4`
b.
\(B\left(x\right)=0\Rightarrow-18+2x^2=0\)
\(\Leftrightarrow2\left(x^2-9\right)=0\)
\(\Leftrightarrow2\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
c.
\(C\left(x\right)=0\Leftrightarrow x^3+4x^2-x-4=0\)
\(\Leftrightarrow x^2\left(x+4\right)-\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x-1=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=1\\x=-1\end{matrix}\right.\)
b) 4x2 - 25 + (2x + 5)2
= (2x + 5)(2x - 5) + (2x + 5)2
= (2x + 5)(2x - 5 + 2x + 5)
= 4x(2x + 5)
1) \(\left(3x+2\right)^2-4\\ =\left(3x+2\right)^2-2^2\\ =\left(3x+2-2\right)\left(3x+2+2\right)\\ =3x.\left(3x+4\right)\)
2) \(4x^2-25y^2=\left(2x\right)^2-\left(5y\right)^2=\left(2x-5y\right)\left(2x+5y\right)\)
3) \(4x^2-49=\left(2x\right)^2-7^2=\left(2x-7\right)\left(2x+7\right)\)
4) \(8z^3+27=\left(2z\right)^3+3^3=\left(2z+3\right)\left(4z^2+6z+9\right)\)
5) \(\dfrac{9}{25}x^4-\dfrac{1}{4}=\left(\dfrac{3}{5}x^2\right)^2-\left(\dfrac{1}{2}\right)^2=\left(\dfrac{3}{5}x^2-\dfrac{1}{2}\right)\left(\dfrac{3}{5}x^2+\dfrac{1}{2}\right)\)
6) \(x^{32}-1\\ =\left(x^{16}\right)^2-1^2\\ =\left(x^{16}-1\right)\left(x^{16}+1\right)\\ =\left(x^8-1\right)\left(x^8+1\right)\left(x^{16}+1\right)\\ =\left(x^4-1\right)\left(x^4+1\right)\left(x^8+1\right)\left(x^{16}+1\right)\\ =\left(x^2-1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)\left(x^{16}+1\right)\\ =\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)\left(x^{16}+1\right)\)
1: \(\left(3x+2\right)^2-4=3x\left(3x+4\right)\)
2: \(4x^2-25y^2=\left(2x-5y\right)\left(2x+5y\right)\)
3: \(4x^2-49=\left(2x-7\right)\left(2x+7\right)\)
4: \(8z^3+27=\left(2z+3\right)\left(4z^2-6z+9\right)\)
5: \(\dfrac{9}{25}x^4-\dfrac{1}{4}=\left(\dfrac{3}{5}x^2-\dfrac{1}{2}\right)\left(\dfrac{3}{5}x^2+\dfrac{1}{2}\right)\)
Đa thức trên có nghiệm \(\Leftrightarrow4x^2-25=0\)
\(\Leftrightarrow4x^2=25\)
\(\Leftrightarrow x^2=\frac{25}{4}\)
\(\Leftrightarrow x=\pm\sqrt{\frac{25}{4}}\)
Vậy ...