Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
4x2 - 3x \(\ge\)0
=> \(4x^2-3x+7\ge7\)
=> vậy phương trình vô nghiệm
hok tốt .
Bài này áp dụng hằng đẳng thức lớp 8 a2-2ab+b2=(a-b)2
\(M\left(x\right)=4x^2-3x+7\)
\(M\left(x\right)=3x^2+\text{[}x^2-2.1,5x+\left(1,5^2\right)\text{]+4,75}\)
\(M\left(x\right)=3x^2+\left(x-1,5\right)^2+4,75\)
Ta có: \(\orbr{\begin{cases}3x^2\ge0\forall x\\\left(x-1,5\right)^2\ge0\forall x\end{cases}\Rightarrow3x^2+\left(x-1,5\right)^2+4,75\ge4,75\forall x}\)
\(\Rightarrow3x^2+\left(x-1,5\right)^2+4,75>0\)
\(\Rightarrow M\left(x\right)>0\)
\(\Rightarrow\text{đ}a th\text{ức} M\left(x\right)\)vô nghiệm
Vậy đa thức M(x) vô nghiệm
a) dễ tự làm
b) A(x) có bậc 6
hệ số: -1 ; 5 ; 6 ; 9 ; 4 ; 3
B(x) có bậc 6
hệ số: 2 ; -5 ; 3 ; 4 ; 7
c) bó tay
d) cx bó tay
a) P(x) = 5x3 - 3x + 7 - x
= 5x3 - 4x + 7
Q(x) = -4x3 + 5x2 - 3x + 4x + 3x3 - 4x2 + 1
= -x3 + x2 + x + 1
b) M(x) = P(x) + Q(x)
= ( 5x3 - 4x + 7 ) + ( -x3 + x2 + x + 1 )
= 5x3 - 4x + 7 -x3 + x2 + x + 1
= 4x3 + x2 - 3x + 8
N(x) = P(x) - Q(x)
= ( 5x3 - 4x + 7 ) - ( -x3 + x2 + x + 1 )
= 5x3 - 4x + 7 + x3 - x2 - x - 1
= 6x3 - x2 - 5x + 6
c) M(x) = 4x3 + x2 - 3x + 8
M(x) = 0 <=> 4x3 + x2 - 3x + 8 = 0
( Bạn xem lại đề nhé chứ lớp 7 chưa học tìm nghiệm đa thức bậc 3 đâu )
bài 1:
a) C= 0
hay 3x+5+(7-x)=0
3x+(7-x)=-5
với 3x=-5
x= -5:3= \(x = { {-5} \over 3}\)
với 7-x=-5
x= 7+5= 12
=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12
mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha
a/ M(x)+N(x)=(3x3+3x3)+(x2+2x2)-(3x+x)+(5+9)
=6x3+3x2-4x+14
b/ Ta có: M(x)+N(x)-P(x)=6x3+3x2+2x
=> P(x)=M(x)+N(x)-6x3+3x2+2x=-6x
c/ P(x)=-6x=0
=> x=0 là nghiệm đa thức P(x)
d/ Ta có: x2+4x+5
=x.x+2x+2x+2.2+1
=x(x+2)+2(x+2)+1
=(x+2)(x+2)+1
=(x+2)2+1
Mà (x+2)2\(\ne0\)=> Đa thức trên \(\ge1\)
=> Đa thức trên vô nghiệm.
Ta có x2-x+1=(x2-2*1/2x+1/4)+3/4 =(x-1/2)2+3/4.
vì (x-1/2)2 >=0 với mọi x => (x-1/2)2+3/4 >=3/4 >0
vậy đa thức x2-x+1 vô nghiệm
câu 1,
trong sách nâng cao và phát triển toán 7 tập 2 trang 15 có bài tương tự đấy.
2/ a. Ta có : x2 - 5x + 6 = x2 - 3x - 2x + 6 = ( x2 - 3x ) + ( - 2x + 6 ) = x ( x - 3 ) - 2 ( x - 3 ) = ( x - 3 )( x - 2 ) = 0 => x - 3 = 0 hoặc x - 2 = 0 => x = 3 hoặc x = 2
c. Tá có : 6x^2 - 11x + 3 = 6x^2 - 9x - 2x + 3 = ( 6x^2 - 9x ) + ( - 2x + 3 ) = 3x ( 2x - 3 ) - ( 2x - 3 ) = ( 2x - 3 )( 3x - 1 ) = 0 => 2x-3 =0 hoặc 3x-1 =0 => x= 3/2 hoặc x =1/3
Mấy bài sau làm tương tự nha
a) \(x^2-x=0\)
\(\Leftrightarrow x\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy ...
b) \(x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Vậy ...
Lời giải:
Ta thấy $D(x)=4x^2-3x+7=3x^2+(x^2-3x+1,5^2)+4,75=3x^2+(x-1,5)^2+4,75\geq 4,75>0$ với mọi $x$
$\Rightarrow D(x)$ vô nghiệm