Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta thấy $D(x)=4x^2-3x+7=3x^2+(x^2-3x+1,5^2)+4,75=3x^2+(x-1,5)^2+4,75\geq 4,75>0$ với mọi $x$
$\Rightarrow D(x)$ vô nghiệm
b: 1/2x-4=0
=>1/2x=4
hay x=8
a: x+7=0
=>x=-7
e: 4x2-81=0
=>(2x-9)(2x+9)=0
=>x=9/2 hoặc x=-9/2
g: x2-9x=0
=>x(x-9)=0
=>x=0 hoặc x=9
a: x+7=0
nên x=-7
b: x-4=0
nên x=4
c: -8x+20=0
=>-8x=-20
hay x=5/2
d: x2-100=0
=>(x-10)(x+10)=0
=>x=10 hoặc x=-10
c. Ta có h(x) = 0 ⇒ 5x + 1 = 0 ⇒ x = -1/5
Vậy nghiệm của đa thức h(x) là x = -1/5 (1 điểm)
a, \(P\left(x\right)=5x^2-3x+7\)
\(Q\left(x\right)=-5x^3-x^2+4x-5\)
b, Thay x = 1 vào Q(x) ta được
-5 - 1 + 4 - 5 = -7
c, \(Q\left(x\right)+P\left(x\right)=-5x^3+4x^2+x+2\)
\(Q\left(x\right)-P\left(x\right)=-5x^3-6x^2+7x-12\)
\(-5x^3+9x^2+x=0\Leftrightarrow x\left(-5x^2+9x+1\right)=0\Leftrightarrow x=0;x=\dfrac{9\pm\sqrt{101}}{10}\)
ta có
4x2 - 3x \(\ge\)0
=> \(4x^2-3x+7\ge7\)
=> vậy phương trình vô nghiệm
hok tốt .
Bài này áp dụng hằng đẳng thức lớp 8 a2-2ab+b2=(a-b)2
\(M\left(x\right)=4x^2-3x+7\)
\(M\left(x\right)=3x^2+\text{[}x^2-2.1,5x+\left(1,5^2\right)\text{]+4,75}\)
\(M\left(x\right)=3x^2+\left(x-1,5\right)^2+4,75\)
Ta có: \(\orbr{\begin{cases}3x^2\ge0\forall x\\\left(x-1,5\right)^2\ge0\forall x\end{cases}\Rightarrow3x^2+\left(x-1,5\right)^2+4,75\ge4,75\forall x}\)
\(\Rightarrow3x^2+\left(x-1,5\right)^2+4,75>0\)
\(\Rightarrow M\left(x\right)>0\)
\(\Rightarrow\text{đ}a th\text{ức} M\left(x\right)\)vô nghiệm
Vậy đa thức M(x) vô nghiệm